Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2023, Volume 20, Issue 2, Pages 814–823
DOI: https://doi.org/10.33048/semi.2023.20.048
(Mi semr1611)
 

Mathematical logic, algebra and number theory

On profinite polyadic groups

M. Shahryaria, M. Rostamib

a College of Science, Sultan Qaboos University, Muscat, Oman
b Faculty of Mathematics, Statistics, and Computer Science, University of Tabriz, Tabriz, Iran
References:
Abstract: We study the structure of profinite polyadic groups and we prove that a polyadic topological group $(G, f)$ is profinite, if and only if, it is compact, Hausdorff, totally disconnected. More generally, for a pseudo-variety (or a formation) of finite groups $\mathfrak{X}$, we define the class of $\mathfrak{X}$-polyadic groups, and we show that a polyadic group $(G, f)$ is pro-$\mathfrak{X}$, if and only if, it is compact, Hausdorff, totally disconnected and for every open congruence $R$, the quotient $(G/R, f_R)$ is $\mathfrak{X}$-polyadic.
Keywords: Polyadic groups, $n$-ary groups, Profinite groups and polyadic groups, Post's cover and retract of a polyadic group.
Received November 15, 2020, published October 5, 2023
Document Type: Article
UDC: 512.54
MSC: 20N15
Language: English
Citation: M. Shahryari, M. Rostami, “On profinite polyadic groups”, Sib. Èlektron. Mat. Izv., 20:2 (2023), 814–823
Citation in format AMSBIB
\Bibitem{ShaRos23}
\by M.~Shahryari, M.~Rostami
\paper On profinite polyadic groups
\jour Sib. \`Elektron. Mat. Izv.
\yr 2023
\vol 20
\issue 2
\pages 814--823
\mathnet{http://mi.mathnet.ru/semr1611}
\crossref{https://doi.org/10.33048/semi.2023.20.048}
Linking options:
  • https://www.mathnet.ru/eng/semr1611
  • https://www.mathnet.ru/eng/semr/v20/i2/p814
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:37
    Full-text PDF :28
    References:18
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024