Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2023, Volume 20, Issue 2, Pages 785–796
DOI: https://doi.org/10.33048/semi.2023.20.046
(Mi semr1609)
 

This article is cited in 2 scientific papers (total in 2 papers)

Mathematical logic, algebra and number theory

Finite groups with formational subnormal primary subgroups of bounded exponent

V. S. Monakhov, I. L. Sokhor

Francisk Skorina Gomel State University, Kirova Str. 119, 246019, Gomel, Belarus
Full-text PDF (397 kB) Citations (2)
References:
Abstract: Let $\mathfrak{U}_k$ be the class of all supersoluble groups in which exponents are not divided by the $(k+1)$-th powers of primes. We investigate the classes $\mathrm{w}\mathfrak{U}_k$ and $\mathrm{v}\mathfrak{U}_k$ that contain all finite groups in which every Sylow and, respectively, every cyclic primary subgroup is $\mathfrak{U}_k$-subnormal. We prove that $\mathrm{w}\mathfrak{U}_k$ and $\mathrm{v}\mathfrak{U}_k$ are subgroup-closed saturated formations and obtain the characterizations of these formations.
Keywords: finite group, primary subgroup, subnormal subgroup.
Funding agency Grant number
Belarusian Republican Foundation for Fundamental Research Ф23РНФ-237
This work is supported by the Belarusian Republican Foundation for Fundamental Research (Grant Ф23РНФ-237).
Received February 15, 2023, published October 5, 2023
Document Type: Article
UDC: 512.54
MSC: 20D35
Language: English
Citation: V. S. Monakhov, I. L. Sokhor, “Finite groups with formational subnormal primary subgroups of bounded exponent”, Sib. Èlektron. Mat. Izv., 20:2 (2023), 785–796
Citation in format AMSBIB
\Bibitem{MonSok23}
\by V.~S.~Monakhov, I.~L.~Sokhor
\paper Finite groups with formational subnormal primary subgroups of bounded exponent
\jour Sib. \`Elektron. Mat. Izv.
\yr 2023
\vol 20
\issue 2
\pages 785--796
\mathnet{http://mi.mathnet.ru/semr1609}
\crossref{https://doi.org/10.33048/semi.2023.20.046}
Linking options:
  • https://www.mathnet.ru/eng/semr1609
  • https://www.mathnet.ru/eng/semr/v20/i2/p785
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:70
    Full-text PDF :31
    References:18
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024