|
Real, complex and functional analysis
Multidimensional Hermite interpolation
M. E. Durakov, E. K. Leinartas, A. K. Tsikh Siberian Federal University, pr. Svobodnyi, 79, 660041, Krasnoyarsk, Russia
Abstract:
The Hermite interpolation formulas are based on the interpretation of interpolation nodes as roots of suitable polynomials. Therefore, such formulas belong to the class of algebraic interpolations. The article considers a multidimensional variant of Hermite interpolation, presents a class of algebraic systems of equations for which the Hermite interpolation polynomial is represented by an explicit formula. The theory of multidimensional residues is used as the main tool.
Keywords:
grothendieck residue, interpolation, local algebra.
Received November 28, 2022, published September 22, 2023
Citation:
M. E. Durakov, E. K. Leinartas, A. K. Tsikh, “Multidimensional Hermite interpolation”, Sib. Èlektron. Mat. Izv., 20:2 (2023), 700–710
Linking options:
https://www.mathnet.ru/eng/semr1603 https://www.mathnet.ru/eng/semr/v20/i2/p700
|
|