Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2023, Volume 20, Issue 2, Pages 700–710
DOI: https://doi.org/10.33048/semi.2023.20.040
(Mi semr1603)
 

Real, complex and functional analysis

Multidimensional Hermite interpolation

M. E. Durakov, E. K. Leinartas, A. K. Tsikh

Siberian Federal University, pr. Svobodnyi, 79, 660041, Krasnoyarsk, Russia
References:
Abstract: The Hermite interpolation formulas are based on the interpretation of interpolation nodes as roots of suitable polynomials. Therefore, such formulas belong to the class of algebraic interpolations. The article considers a multidimensional variant of Hermite interpolation, presents a class of algebraic systems of equations for which the Hermite interpolation polynomial is represented by an explicit formula. The theory of multidimensional residues is used as the main tool.
Keywords: grothendieck residue, interpolation, local algebra.
Funding agency Grant number
Russian Science Foundation 20-11-20117
The investigation was supported by the Russian Science Foundation (grant No. 20-11-20117).
Received November 28, 2022, published September 22, 2023
Document Type: Article
UDC: 517.5
MSC: 41A05, 32A27
Language: English
Citation: M. E. Durakov, E. K. Leinartas, A. K. Tsikh, “Multidimensional Hermite interpolation”, Sib. Èlektron. Mat. Izv., 20:2 (2023), 700–710
Citation in format AMSBIB
\Bibitem{DurLeiTsi23}
\by M.~E.~Durakov, E.~K.~Leinartas, A.~K.~Tsikh
\paper Multidimensional Hermite interpolation
\jour Sib. \`Elektron. Mat. Izv.
\yr 2023
\vol 20
\issue 2
\pages 700--710
\mathnet{http://mi.mathnet.ru/semr1603}
\crossref{https://doi.org/10.33048/semi.2023.20.040}
Linking options:
  • https://www.mathnet.ru/eng/semr1603
  • https://www.mathnet.ru/eng/semr/v20/i2/p700
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024