Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2023, Volume 20, Issue 2, Pages 638–645
DOI: https://doi.org/10.33048/semi.2023.20.038
(Mi semr1601)
 

Discrete mathematics and mathematical cybernetics

Test fragments of perfect colorings of circulant graphs

M. A. Lisitsynaa, S. V. Avgustinovichb

a Budyonny Military Academy of the Signal Corps, pr. Tikhoretsky, 3, 194064, St Petersburg, Russia
b Sobolev Institute of Mathematics, pr. Koptyuga, 4, 630090, Novosibirsk, Russia
References:
Abstract: Let $G=(V,E)$ be a transitive graph. A subset $T$ of the vertex set $V(G)$ is a $k$-test fragment if for every perfect $k$-coloring $\phi$ of the graph $G$ there exists a position of this fragment, whose partial coloring allows to reconstruct the whole $\phi$.
The objects of this study are $k$-test fragments of infinite circulant graphs. An infinite circulant graph with distances $d_1 < d_2 < \ldots < d_n$ is a graph, whose set of vertices is the set of integers, and two vertices $i$ and $j$ are adjacent if $|i-j| \in \{d_1,d_2,…,d_n\}$. If $d_i = i$ for all $i$ from $1$ to $n$, then the graph is called an infinite circulant graph with a continuous set of distances.
Upper bounds for the cardinalities of minimal $k$-test fragments of infinite circulant graphs with a continuous set of distances are obtained for any $n$ and $k$. A rough estimate is also obtained in the general case – for infinite circulant graphs with distances $d_1, d_2, \ldots , d_n$ and an arbitrary finite $k$.
Keywords: perfect coloring, infinite circulant graph, $k$-test fragment.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation FWNF-2022-0017
Received January 5, 2023, published September 22, 2023
Document Type: Article
UDC: 519.174.7
MSC: 05C50
Language: Russian
Citation: M. A. Lisitsyna, S. V. Avgustinovich, “Test fragments of perfect colorings of circulant graphs”, Sib. Èlektron. Mat. Izv., 20:2 (2023), 638–645
Citation in format AMSBIB
\Bibitem{LisAvg23}
\by M.~A.~Lisitsyna, S.~V.~Avgustinovich
\paper Test fragments of perfect colorings of circulant graphs
\jour Sib. \`Elektron. Mat. Izv.
\yr 2023
\vol 20
\issue 2
\pages 638--645
\mathnet{http://mi.mathnet.ru/semr1601}
\crossref{https://doi.org/10.33048/semi.2023.20.038}
Linking options:
  • https://www.mathnet.ru/eng/semr1601
  • https://www.mathnet.ru/eng/semr/v20/i2/p638
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:52
    Full-text PDF :11
    References:16
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024