Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2023, Volume 20, Issue 1, Pages 514–523
DOI: https://doi.org/10.33048/semi.2023.20.031
(Mi semr1595)
 

Discrete mathematics and mathematical cybernetics

On Binomial coefficients of real arguments

T. I. Fedoryaeva

Sobolev Institute of Mathematics, pr. Koptyuga, 4, 630090, Novosibirsk, Russia
References:
Abstract: As is well-known, a generalization of the classical concept of the factorial $n!$ for a real number $x\in {\mathbb R}$ is the value of Euler's gamma function $\Gamma(1+x)$. In this connection, the notion of a binomial coefficient naturally arose for admissible values of the real arguments.
We prove by elementary means a number of properties of binomial coefficients $\binom{r}{\alpha}$ of real arguments $r, \alpha\in {\mathbb R}$ such as analogs of unimodality, symmetry, Pascal's triangle, etc. for classical binomial coefficients. The asymptotic behavior of such generalized binomial coefficients of a special form is established.
Keywords: factorial, binomial coefficient, gamma function, real binomial coefficient.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation FWNF-2022-0018
The work was carried out within the framework of the state contract of the Sobolev Institute of Mathematics (project no. FWNF-2022-0018).
Received May 11, 2022, published July 18, 2023
Document Type: Article
UDC: 519.114,517.581
MSC: 05A10,11B65
Language: English
Citation: T. I. Fedoryaeva, “On Binomial coefficients of real arguments”, Sib. Èlektron. Mat. Izv., 20:1 (2023), 514–523
Citation in format AMSBIB
\Bibitem{Fed23}
\by T.~I.~Fedoryaeva
\paper On Binomial coefficients of real arguments
\jour Sib. \`Elektron. Mat. Izv.
\yr 2023
\vol 20
\issue 1
\pages 514--523
\mathnet{http://mi.mathnet.ru/semr1595}
\crossref{https://doi.org/10.33048/semi.2023.20.031}
Linking options:
  • https://www.mathnet.ru/eng/semr1595
  • https://www.mathnet.ru/eng/semr/v20/i1/p514
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:80
    Full-text PDF :44
    References:22
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024