Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2023, Volume 20, Issue 1, Pages 501–513
DOI: https://doi.org/10.33048/semi.2023.20.030
(Mi semr1594)
 

Mathematical logic, algebra and number theory

The complexity of quasivariety lattices. II

M. V. Schwidefsky

Novosibirsk State University, Pirogova str. 1, 630090, Novosibirsk, Russia
References:
Abstract: We prove that if a quasivariety $\mathbf{K}$ contains a finite $\mathrm{B}^\ast$-class relative to some subquasivariety and some variety possessing some additional property, then $\mathbf{K}$ contains continuum many $Q$-universal non-profinite subquasivarieties having an independent quasi-equational basis as well as continuum many $Q$-universal non-profinite subquasivarieties having no such basis.
Keywords: inverse limit, quasi-equational basis, quasivariety, profinite structure, profinite quasivariety.
Funding agency Grant number
Russian Science Foundation 22-21-00104
The research was carried out under the support of the Russian Science Foundation, project no. 22-21-00104.
Received March 20, 2022, published July 18, 2023
Document Type: Article
UDC: 515.57
Language: English
Citation: M. V. Schwidefsky, “The complexity of quasivariety lattices. II”, Sib. Èlektron. Mat. Izv., 20:1 (2023), 501–513
Citation in format AMSBIB
\Bibitem{Sch23}
\by M.~V.~Schwidefsky
\paper The complexity of quasivariety lattices.~II
\jour Sib. \`Elektron. Mat. Izv.
\yr 2023
\vol 20
\issue 1
\pages 501--513
\mathnet{http://mi.mathnet.ru/semr1594}
\crossref{https://doi.org/10.33048/semi.2023.20.030}
Linking options:
  • https://www.mathnet.ru/eng/semr1594
  • https://www.mathnet.ru/eng/semr/v20/i1/p501
    Cycle of papers
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:67
    Full-text PDF :26
    References:17
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024