Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2023, Volume 20, Issue 1, Pages 285–292
DOI: https://doi.org/10.33048/semi.2023.20.023
(Mi semr1587)
 

Discrete mathematics and mathematical cybernetics

On the preservation of the Wiener index of cubic graphs upon vertex removal

A. A. Dobrynin

Sobolev Institute of Mathematics, pr. Koptyuga, 4, 630090, Novosibirsk, Russia
References:
Abstract: The Wiener index, $W(G)$, is the sum of distances between all vertices of a connected graph $G$. In 2018, Majstorović, Knor and Škrekovski posed the problem of finding $r$-regular graphs except cycle $C_{11}$ having at least one vertex $v$ with property $W(G)=W(G-v)$. An infinite family of cubic graphs with four such vertices is constructed.
Keywords: distance invariant, Wiener index, Šoltés problem.
Funding agency Grant number
Russian Science Foundation 23-21-00459
This work was supported by the Russian Science Foundation under grant 23-21-00459.
Received February 3, 2023, published March 13, 2023
Document Type: Article
UDC: 519.17
MSC: 05C09
Language: English
Citation: A. A. Dobrynin, “On the preservation of the Wiener index of cubic graphs upon vertex removal”, Sib. Èlektron. Mat. Izv., 20:1 (2023), 285–292
Citation in format AMSBIB
\Bibitem{Dob23}
\by A.~A.~Dobrynin
\paper On the preservation of the Wiener index of cubic graphs upon vertex removal
\jour Sib. \`Elektron. Mat. Izv.
\yr 2023
\vol 20
\issue 1
\pages 285--292
\mathnet{http://mi.mathnet.ru/semr1587}
\crossref{https://doi.org/10.33048/semi.2023.20.023}
Linking options:
  • https://www.mathnet.ru/eng/semr1587
  • https://www.mathnet.ru/eng/semr/v20/i1/p285
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024