Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2023, Volume 20, Issue 1, Pages 211–244
DOI: https://doi.org/10.33048/semi.2023.20.018
(Mi semr1582)
 

This article is cited in 1 scientific paper (total in 1 paper)

Differentical equations, dynamical systems and optimal control

Criterion for the Sobolev well-posedness of the Dirichlet problem for the Poisson equation in Lipschitz domains. II

A. I. Parfenov

Sobolev Institute of Mathematics, pr. Koptyuga, 4, 630090, Novosibirsk, Russia
Full-text PDF (593 kB) Citations (1)
References:
Abstract: We study the Dirichlet problem for the Poisson equation in bounded Lipschitz domains. We show that its well-posedness in the higher order Sobolev space implies a discrete Hardy type inequality that contains a positive harmonic function with vanishing trace and the approximative numbers of the boundary of the domain. This necessary condition is also expected to be sufficient for the well-posedness. A simpler condition occurring in the author's straightenability theory of Lipschitz domains is shown to be equivalent to the existence of a homeomorphism that straightens the boundary and preserves with respect to composition the subspace of zero trace functions in the considered Sobolev space.
Keywords: approximative numbers, Dirichlet problem for the Poisson equation, Hardy type inequality, Lipschitz domain, straightening.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation FWNF-2022-0008
Received May 3, 2022, published March 13, 2023
Document Type: Article
UDC: 517.956.225
MSC: 35J05
Language: Russian
Citation: A. I. Parfenov, “Criterion for the Sobolev well-posedness of the Dirichlet problem for the Poisson equation in Lipschitz domains. II”, Sib. Èlektron. Mat. Izv., 20:1 (2023), 211–244
Citation in format AMSBIB
\Bibitem{Par23}
\by A.~I.~Parfenov
\paper Criterion for the Sobolev well-posedness of the Dirichlet problem for the Poisson equation in Lipschitz domains. II
\jour Sib. \`Elektron. Mat. Izv.
\yr 2023
\vol 20
\issue 1
\pages 211--244
\mathnet{http://mi.mathnet.ru/semr1582}
\crossref{https://doi.org/10.33048/semi.2023.20.018}
Linking options:
  • https://www.mathnet.ru/eng/semr1582
  • https://www.mathnet.ru/eng/semr/v20/i1/p211
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:47
    Full-text PDF :20
    References:18
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024