Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2023, Volume 20, Issue 1, Pages 207–210
DOI: https://doi.org/10.33048/semi.2023.20.017
(Mi semr1581)
 

Mathematical logic, algebra and number theory

Distance-regular graph with intersection array $\{143,108,27;1,12,117\}$ does not exist

A. A. Makhneva, M. M. Isakovab, A. A. Tokbaevab

a N.N. Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of the Russian Academy of Sciences, str. S.Kovalevskaya, 16, 620990, Yekaterinburg, Russia
b Kabardino-Balkarian State University named after H.M. Berbekov, str. Chernyshevsky, 175, 360004, Nalchik, Russia
References:
Abstract: There is a formally self-dual distance-regular graph $\Gamma$ with classical parameters $d=3$, $b=\alpha+1=q$, $\beta=q^2+q-1$ and intersection array $\{(q^2+q-1)(q^2+q+1),(q^2+q)q^2,q^3;1,(q^2+q),q^2(q^2+q+1)\}$. For the graph $\Gamma$ we have the strongly regular graphs $\Gamma_2$ and $\Gamma_3$ ($\Gamma_3$ is pseuqo-geometric for $pG_{q-1}(q^2+q-1,(q^2+q+1)(q-1))$).
It is proved that a distance-regular graph with intersection array $\{143,108,27;1,12,117\}$ ($q=3$) does not exist.
Keywords: distance-regular graph, formally self-dual graph, triple intersection numbers.
Funding agency Grant number
Russian Foundation for Basic Research 20-51-53013
Received October 16, 2021, published March 9, 2023
Document Type: Article
UDC: 519.17
MSC: 05C25
Language: Russian
Citation: A. A. Makhnev, M. M. Isakova, A. A. Tokbaeva, “Distance-regular graph with intersection array $\{143,108,27;1,12,117\}$ does not exist”, Sib. Èlektron. Mat. Izv., 20:1 (2023), 207–210
Citation in format AMSBIB
\Bibitem{MakIsaTok23}
\by A.~A.~Makhnev, M.~M.~Isakova, A.~A.~Tokbaeva
\paper Distance-regular graph with intersection array $\{143,108,27;1,12,117\}$ does not exist
\jour Sib. \`Elektron. Mat. Izv.
\yr 2023
\vol 20
\issue 1
\pages 207--210
\mathnet{http://mi.mathnet.ru/semr1581}
\crossref{https://doi.org/10.33048/semi.2023.20.017}
Linking options:
  • https://www.mathnet.ru/eng/semr1581
  • https://www.mathnet.ru/eng/semr/v20/i1/p207
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:64
    Full-text PDF :27
    References:16
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024