Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2023, Volume 20, Issue 1, Pages 124–131
DOI: https://doi.org/10.33048/semi.2023.20.011
(Mi semr1575)
 

Mathematical logic, algebra and number theory

Irreducible carpets of Lie type $B_l$, $C_l$ and $F_4$ over fields

A. O. Likhachevaab, Ya. N. Nuzhina

a Siberian Federal University, pr.Svobodny, 79, 660041, Krasnoyarsk, Russia
b North Caukasus Center for Mathematical Research, North Ossetian State University after K.L. Khetagurov
References:
Abstract: V.M. Levchuk described irreducible carpets of Lie type of rank greater than $1$ over the field $F$, at least one additive subgroup of which is an $R$-module, where $F$ is an algebraic extension of the field $R$, in assumption that the characteristic of the field $F$ is different from $0$ and $2$ for the types $B_l$, $C_l$, $F_4$, and for the type $G_2$ it is different from $0, 2$ and $3$ (Algebra i Logika, 1983, 22, no. 5). It turned out that, up to conjugation by a diagonal element, all additive subgroups of such carpets coincide with one intermediate subfield between $R$ and $F$. We solve a similar problem for carpets of types $B_l$, $C_l$, $F_4$ over a field of characteristic $0$ and $2$. It turned out that carpets appear in characteristic $2$, which are parameterized by a pair of additive subgroups, and for types $B_l$ and $C_l$ one of these two additive subgroups may not be a field.
Keywords: Chevalley group, carpet of additive subgroups, carpet subgroup.
Funding agency Grant number
Russian Science Foundation 22-21-00733
Received March 28, 2022, published February 26, 2023
Document Type: Article
UDC: 512.54
MSC: 20G07
Language: Russian
Citation: A. O. Likhacheva, Ya. N. Nuzhin, “Irreducible carpets of Lie type $B_l$, $C_l$ and $F_4$ over fields”, Sib. Èlektron. Mat. Izv., 20:1 (2023), 124–131
Citation in format AMSBIB
\Bibitem{LikNuz23}
\by A.~O.~Likhacheva, Ya.~N.~Nuzhin
\paper Irreducible carpets of Lie type $B_l$, $C_l$ and $F_4$ over fields
\jour Sib. \`Elektron. Mat. Izv.
\yr 2023
\vol 20
\issue 1
\pages 124--131
\mathnet{http://mi.mathnet.ru/semr1575}
\crossref{https://doi.org/10.33048/semi.2023.20.011}
Linking options:
  • https://www.mathnet.ru/eng/semr1575
  • https://www.mathnet.ru/eng/semr/v20/i1/p124
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:104
    Full-text PDF :19
    References:12
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024