Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2023, Volume 20, Issue 1, Pages 110–123
DOI: https://doi.org/10.33048/semi.2023.20.010
(Mi semr1574)
 

This article is cited in 1 scientific paper (total in 1 paper)

Differentical equations, dynamical systems and optimal control

Spatially-Nonlocal Boundary Value Problems with the generalized Samarskii–Ionkin condition for quasi-parabolic equations

A. I. Kozhanovab, A. M. Abdrakhmanovc

a Sobolev Institute of Mathematics, pr. Koptyuga, 4, 630090, Novosibirsk, Russia
b Novosibirsk State University, Pirogova st., 1, 630090, Novosibirsk, Russia
c Ufa State Technical University, Department of Artificial Intelligence and Advanced Mathematical Research, st. Karl Marx, 12, 450077, Ufa, Russia
Full-text PDF (419 kB) Citations (1)
References:
Abstract: The work is devoted to the study of the solvability of boundary value problems for quasi-parabolic equations
$$(-1)^pD^{2p+1}_tu-\frac{\partial}{\partial x}\left(a(x)u_x\right)+c(x,t)u=f(x ,t)$$

$$((x,t)\in (0,1)\times (0,T), a(x)>0, D^k_t=\frac{\partial^k}{\partial t ^k},\ p>0 - \text{integer})$$
with boundary conditions of one of the types
$$u(0,t)-\beta u(1,t)=0, u_x(1,t)=0, t\in (0,T),$$
or
$$u_x(0,t)-\beta u_x(1,t)=0, u(1,t)=0, t\in (0,T).$$
The problems under study can be treated as nonlocal problems with the generalized Samarskii–Ionkin condition in terms of spatial variable, for them we prove existence and uniqueness theorems for regular solutions—namely, solutions that have all generalized in the sense of S.L. Sobolev derivatives included in the corresponding equation.
Keywords: quasi-parabolic equations, non-local boundary value problems, generalized Samarskii–Ionkin condition, regular solutions, existence, uniqueness.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 075-15-2022-282
Received September 3, 2022, published March 17, 2023
Document Type: Article
UDC: 517.946
MSC: 35L80\ 35L25
Language: Russian
Citation: A. I. Kozhanov, A. M. Abdrakhmanov, “Spatially-Nonlocal Boundary Value Problems with the generalized Samarskii–Ionkin condition for quasi-parabolic equations”, Sib. Èlektron. Mat. Izv., 20:1 (2023), 110–123
Citation in format AMSBIB
\Bibitem{KozAbd23}
\by A.~I.~Kozhanov, A.~M.~Abdrakhmanov
\paper Spatially-Nonlocal Boundary Value Problems with the generalized Samarskii--Ionkin condition for quasi-parabolic equations
\jour Sib. \`Elektron. Mat. Izv.
\yr 2023
\vol 20
\issue 1
\pages 110--123
\mathnet{http://mi.mathnet.ru/semr1574}
\crossref{https://doi.org/10.33048/semi.2023.20.010}
Linking options:
  • https://www.mathnet.ru/eng/semr1574
  • https://www.mathnet.ru/eng/semr/v20/i1/p110
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:122
    Full-text PDF :87
    References:20
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024