|
Geometry and topology
Invariant Ricci solitons on three-dimensional nonunimodular Lie groups with a left-invariant Lorentzian metric and a semisymmetric connection
P. N. Klepikov, E. D. Rodionov, O. P. Khromova Altai State University, pr. Lenina, 61, 656049, Barnaul, Russia
Abstract:
In this paper we investigate invariant Ricci solitons on three-dimensional nonunimodular metric Lie groups with a semisymmetric connection. We have proved that there exist nontrivial invariant Ricci solitons on some three-dimensional Lie groups with a left-invariant Lorentzian metric and a semisymmetric non Levi-Civita connection. Moreover a complete classification of nontrivial invariant Ricci solitons and the corresponding semisymmetric connections on three-dimensional nonunimodular Lie groups is obtained. In result we have given an answer on L.Cerbo conjecture about nontrivial invariant Ricci solitons.
Keywords:
invariant Ricci solitons, Lie groups, left-invariant Lorentzian metrics, semisymmetric connections.
Received May 13, 2022, published February 6, 2023
Citation:
P. N. Klepikov, E. D. Rodionov, O. P. Khromova, “Invariant Ricci solitons on three-dimensional nonunimodular Lie groups with a left-invariant Lorentzian metric and a semisymmetric connection”, Sib. Èlektron. Mat. Izv., 20:1 (2023), 48–61
Linking options:
https://www.mathnet.ru/eng/semr1569 https://www.mathnet.ru/eng/semr/v20/i1/p48
|
Statistics & downloads: |
Abstract page: | 66 | Full-text PDF : | 36 | References: | 19 |
|