Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2022, Volume 19, Issue 2, Pages 1077–1087
DOI: https://doi.org/10.33048/semi.2022.19.086
(Mi semr1559)
 

Mathematical logic, algebra and number theory

On nilpotent Schur groups

G. K. Ryabovab

a Novosibirsk State Technical University, K. Marx avenue, 20, 630073, Novosibirsk, Russia
b Sobolev Institute of Mathematics, pr. Koptyuga, 4, 630090, Novosibirsk, Russia
References:
Abstract: A finite group $G$ is called a Schur group if every $S$-ring over $G$ is schurian, i.e. associated in a natural way with a subgroup of $\mathrm{Sym}(G)$ that contains all right translations. We prove that every nonabelian nilpotent Schur group belongs to one of a few explicitly given families of groups.
Keywords: Schur rings, Schur groups, nilpotent groups.
Funding agency Grant number
Russian Science Foundation 22-71-00021
The work is supported by Russian Scientific Fund (grant 22-71-00021).
Received April 30, 2022, published December 29, 2022
Bibliographic databases:
Document Type: Article
UDC: 512.542.74
MSC: 05E30, 20B25
Language: English
Citation: G. K. Ryabov, “On nilpotent Schur groups”, Sib. Èlektron. Mat. Izv., 19:2 (2022), 1077–1087
Citation in format AMSBIB
\Bibitem{Rya22}
\by G.~K.~Ryabov
\paper On nilpotent Schur groups
\jour Sib. \`Elektron. Mat. Izv.
\yr 2022
\vol 19
\issue 2
\pages 1077--1087
\mathnet{http://mi.mathnet.ru/semr1559}
\crossref{https://doi.org/10.33048/semi.2022.19.086}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4534980}
Linking options:
  • https://www.mathnet.ru/eng/semr1559
  • https://www.mathnet.ru/eng/semr/v19/i2/p1077
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:80
    Full-text PDF :15
    References:19
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024