Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2022, Volume 19, Issue 2, Pages 1015–1037
DOI: https://doi.org/10.33048/semi.2022.19.083
(Mi semr1556)
 

Differentical equations, dynamical systems and optimal control

On the inviscid limit of stationary measures for the stochastic system of the Lorenz model for a baroclinic atmosphere

Yu. Yu. Klevtsova

Siberian State University of Telecommunications and Information Science, ul. Kirova, 86, 630102, Novosibirsk, Russia
References:
Abstract: The paper is concerned with a nonlinear system of partial differential equations with parameters and the random external force. This system describes the two-layer quasi-solenoidal Lorenz model for a baroclinic atmosphere on a rotating two-dimensional sphere. The stationary measures for the Markov semigroup defined by the solutions of the Cauchy problem for this problem is considered. One parameter of the system is highlighted – the coefficient of kinematic viscosity. The sufficient conditions on the random right-hand side and the other param-ters are derived for the existence of a limiting nontrivial point for any sequence of the stationary measures for this system when any sequence of the kinematic viscosity coefficients goes to zero. As it is well known, this coefficient in practice is extremely small. A number of integral properties are proved for the limiting measure. In addition, these results are obtained for one similar baroclinic atmosphere system.
Keywords: baroclinic atmosphere, Lorenz model, random external force, stationary measure, inviscid limit.
Received November 14, 2022, published December 22, 2022
Bibliographic databases:
Document Type: Article
UDC: 517.956.8
MSC: 35G55,~35Q86
Language: English
Citation: Yu. Yu. Klevtsova, “On the inviscid limit of stationary measures for the stochastic system of the Lorenz model for a baroclinic atmosphere”, Sib. Èlektron. Mat. Izv., 19:2 (2022), 1015–1037
Citation in format AMSBIB
\Bibitem{Kle22}
\by Yu.~Yu.~Klevtsova
\paper On the inviscid limit of stationary measures for the stochastic system of the Lorenz model for a baroclinic atmosphere
\jour Sib. \`Elektron. Mat. Izv.
\yr 2022
\vol 19
\issue 2
\pages 1015--1037
\mathnet{http://mi.mathnet.ru/semr1556}
\crossref{https://doi.org/10.33048/semi.2022.19.083}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4528074}
Linking options:
  • https://www.mathnet.ru/eng/semr1556
  • https://www.mathnet.ru/eng/semr/v19/i2/p1015
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:89
    Full-text PDF :10
    References:26
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024