Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2022, Volume 19, Issue 2, Pages 972–983
DOI: https://doi.org/10.33048/semi.2022.19.081
(Mi semr1554)
 

Probability theory and mathematical statistics

Mean number of joint jumps of multivariate extremes of particle scores in Markov branching processes. Clayton copula case

A. V. Lebedev, A. V. Nazmutdinova

Lomonosov Moscow State University, Leninskie gory, 1, Main Building, 16-02, 119991, Moscow, Russia
References:
Abstract: The paper continues the long-term studies of the authors on the extremes of random particles scores in branching processes. A theorem is proved that allows one to find the mean number of joint jumps of multivariate maxima of particle scores in Markov branching processes with continuous time, including processes with immigration. Examples are analyzed where the dependence of scores is described by Clayton copula.
Keywords: Markov branching processes, branching processes with immigration, multivariate extremes, Clayton copula.
Received May 25, 2022, published December 10, 2022
Bibliographic databases:
Document Type: Article
UDC: 519.2
MSC: 60G70
Language: Russian
Citation: A. V. Lebedev, A. V. Nazmutdinova, “Mean number of joint jumps of multivariate extremes of particle scores in Markov branching processes. Clayton copula case”, Sib. Èlektron. Mat. Izv., 19:2 (2022), 972–983
Citation in format AMSBIB
\Bibitem{LebNaz22}
\by A.~V.~Lebedev, A.~V.~Nazmutdinova
\paper Mean number of joint jumps of multivariate extremes of particle scores in Markov branching processes. Clayton copula case
\jour Sib. \`Elektron. Mat. Izv.
\yr 2022
\vol 19
\issue 2
\pages 972--983
\mathnet{http://mi.mathnet.ru/semr1554}
\crossref{https://doi.org/10.33048/semi.2022.19.081}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4518802}
Linking options:
  • https://www.mathnet.ru/eng/semr1554
  • https://www.mathnet.ru/eng/semr/v19/i2/p972
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:73
    Full-text PDF :22
    References:25
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024