Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2022, Volume 19, Issue 2, Pages 949–958
DOI: https://doi.org/10.33048/semi.2022.19.079
(Mi semr1552)
 

Geometry and topology

The volume of a hyperbolic antipodal octahedron

B. Vuong

Regional Scientific and Educational Mathematical Center, Tomsk State University, pr. Lenina, 36, 634050, Tomsk, Russia
References:
Abstract: We consider the hyperbolic antipodal octahedron. It is an octahedron with antipodal symmetry in the hyperbolic space $\mathbb{H}^3$. We establish necessary and sufficient conditions for the existence of such an octahedron in $\mathbb{H}^3$. By dividing the octahedron into appropriate tetrahedra we obtain an explicit integral formula for the volume of the hyperbolic antipodal octahedron.
Keywords: hyperbolic octahedron, hyperbolic volume, antipodal symmetry, hyperbolic tetrahedron, integral formula.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 075-02-2022-884
This work was supported by the Ministry of Science and Higher Education of Russia (agreement No. 075-02-2022-884).
Received November 7, 2022, published December 10, 2022
Bibliographic databases:
Document Type: Article
UDC: 514.132
Language: English
Citation: B. Vuong, “The volume of a hyperbolic antipodal octahedron”, Sib. Èlektron. Mat. Izv., 19:2 (2022), 949–958
Citation in format AMSBIB
\Bibitem{Vuo22}
\by B.~Vuong
\paper The volume of a hyperbolic antipodal octahedron
\jour Sib. \`Elektron. Mat. Izv.
\yr 2022
\vol 19
\issue 2
\pages 949--958
\mathnet{http://mi.mathnet.ru/semr1552}
\crossref{https://doi.org/10.33048/semi.2022.19.079}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4518800}
Linking options:
  • https://www.mathnet.ru/eng/semr1552
  • https://www.mathnet.ru/eng/semr/v19/i2/p949
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:81
    Full-text PDF :22
    References:26
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024