Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2022, Volume 19, Issue 2, Pages 912–934
DOI: https://doi.org/10.33048/semi.2022.19.077
(Mi semr1550)
 

Differentical equations, dynamical systems and optimal control

Blow-up analysis for a class of plate viscoelastic $p(x)-$Kirchhoff type inverse source problem with variable-exponent nonlinearities

M. Shahrouzia, J. Ferreirab, E. Pişkinc, N. Boumazad

a Department of Mathematics, Jahrom University, Jahrom, P.O.Box: 74137-66171, Iran
b Department of Exact Sciences, Federal Fluminense University, Volta Redonda, 27255-125, Brazil
c Department of Mathematics, Dicle University, Diyarbakı r, TR-21280, Turkey
d Department of Mathematics and Computer Science, Larbi Tebessi University, Tebessa, Algeria
References:
Abstract: In this work, we study the blow-up analysis for a class of plate viscoelastic $p(x)$-Kirchhoff type inverse source problem of the form:
\begin{align*} u_{tt}+\Delta^{2}u&-\left(a+b\int_{\Omega}\frac{1}{p(x)}|\nabla u|^{p(x)}dx\right)\Delta_{p(x)}u-\int_{0}^{t}g(t-\tau)\Delta^{2}u(\tau)d\tau \\ & +\beta|u_{t}|^{m(x)-2}u_{t}=\alpha|u|^{q(x)-2}u+f(t)\omega(x). \end{align*}
Under suitable conditions on kernel of the memory, initial data and variable exponents, we prove the blow up of solutions in two cases: linear damping term ($m(x)\equiv2$) and nonlinear damping term ($m(x)>2$). Precisely, we show that the solutions with positive initial energy blow up in a finite time when $m(x)\equiv2$ and blow up at infinity if $m(x)>2$.
Keywords: inverse source problem, blow-up, viscoelastic, $p(x)$-Kirchhoff type equation.
Received August 24, 2022, published December 10, 2022
Bibliographic databases:
Document Type: Article
UDC: 517.958
MSC: 35R30
Language: English
Citation: M. Shahrouzi, J. Ferreira, E. Pişkin, N. Boumaza, “Blow-up analysis for a class of plate viscoelastic $p(x)-$Kirchhoff type inverse source problem with variable-exponent nonlinearities”, Sib. Èlektron. Mat. Izv., 19:2 (2022), 912–934
Citation in format AMSBIB
\Bibitem{ShaFerPis22}
\by M.~Shahrouzi, J.~Ferreira, E.~Pi{\c s}kin, N.~Boumaza
\paper Blow-up analysis for a class of plate viscoelastic $p(x)-$Kirchhoff type inverse source problem with variable-exponent nonlinearities
\jour Sib. \`Elektron. Mat. Izv.
\yr 2022
\vol 19
\issue 2
\pages 912--934
\mathnet{http://mi.mathnet.ru/semr1550}
\crossref{https://doi.org/10.33048/semi.2022.19.077}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4518798}
Linking options:
  • https://www.mathnet.ru/eng/semr1550
  • https://www.mathnet.ru/eng/semr/v19/i2/p912
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:94
    Full-text PDF :33
    References:19
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024