Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2022, Volume 19, Issue 2, Pages 902–911
DOI: https://doi.org/10.33048/semi.2022.19.076
(Mi semr1549)
 

This article is cited in 2 scientific papers (total in 2 papers)

Mathematical logic, algebra and number theory

The quasivariety $\mathbf{S}\mathbf{P}(L_6)$. I. An equational basis

A. O. Basheyevaa, M. V. Schwidefskyb, K. D. Sultankulova

a L. N. Gumilev Eurasian National University, Kazhymukan str., 13, 010008, Nur-Sultan, Kazakhstan
b Sobolev Institute of Mathematics SB RAS, Acad. Koptyug ave., 4, 630090, Novosibirsk, Russia
Full-text PDF (418 kB) Citations (2)
References:
Abstract: We prove that the quasivariety $\mathbf{S}\mathbf{P}(L_6)$ is a variety and find an equational basis for this variety.
Keywords: lattice, quasivariety, variety, poset.
Funding agency Grant number
Ministry of Education and Science of the Republic of Kazakhstan AP13268735
Russian Science Foundation 22-21-00104
The research was carried out under the support of the Russian Science Foundation, project number 22-21-00104. A. O. Basheyeva was supported by the Science Committee of the Ministry of Science and Higher Education of the Republic of Kazakhstan (project no. AP13268735).
Received March 20, 2022, published December 10, 2022
Bibliographic databases:
Document Type: Article
UDC: 515.56
MSC: 06B20, 08B05, 08C15
Language: English
Citation: A. O. Basheyeva, M. V. Schwidefsky, K. D. Sultankulov, “The quasivariety $\mathbf{S}\mathbf{P}(L_6)$. I. An equational basis”, Sib. Èlektron. Mat. Izv., 19:2 (2022), 902–911
Citation in format AMSBIB
\Bibitem{BasSchSul22}
\by A.~O.~Basheyeva, M.~V.~Schwidefsky, K.~D.~Sultankulov
\paper The quasivariety $\mathbf{S}\mathbf{P}(L_6)$. I. An equational basis
\jour Sib. \`Elektron. Mat. Izv.
\yr 2022
\vol 19
\issue 2
\pages 902--911
\mathnet{http://mi.mathnet.ru/semr1549}
\crossref{https://doi.org/10.33048/semi.2022.19.076}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4518797}
Linking options:
  • https://www.mathnet.ru/eng/semr1549
  • https://www.mathnet.ru/eng/semr/v19/i2/p902
    Cycle of papers
    This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:116
    Full-text PDF :28
    References:19
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024