|
This article is cited in 2 scientific papers (total in 2 papers)
Mathematical logic, algebra and number theory
The quasivariety $\mathbf{S}\mathbf{P}(L_6)$. I. An equational basis
A. O. Basheyevaa, M. V. Schwidefskyb, K. D. Sultankulova a L. N. Gumilev Eurasian National University, Kazhymukan str., 13, 010008, Nur-Sultan, Kazakhstan
b Sobolev Institute of Mathematics SB RAS, Acad. Koptyug ave., 4, 630090, Novosibirsk, Russia
Abstract:
We prove that the quasivariety $\mathbf{S}\mathbf{P}(L_6)$ is a variety and find an equational basis for this variety.
Keywords:
lattice, quasivariety, variety, poset.
Received March 20, 2022, published December 10, 2022
Citation:
A. O. Basheyeva, M. V. Schwidefsky, K. D. Sultankulov, “The quasivariety $\mathbf{S}\mathbf{P}(L_6)$. I. An equational basis”, Sib. Èlektron. Mat. Izv., 19:2 (2022), 902–911
Linking options:
https://www.mathnet.ru/eng/semr1549 https://www.mathnet.ru/eng/semr/v19/i2/p902
|
Statistics & downloads: |
Abstract page: | 120 | Full-text PDF : | 29 | References: | 23 |
|