Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2022, Volume 19, Issue 2, Pages 880–888
DOI: https://doi.org/10.33048/semi.2019.16.074
(Mi semr1547)
 

This article is cited in 3 scientific papers (total in 3 papers)

Mathematical logic, algebra and number theory

Reidemeister classes in wreath products of abelian groups

M. I. Fraimanab, V. E. Troitskyab

a Dept. of Mech. and Math., Lomonosov Moscow State University, 119991, Moscow, Russia
b Moscow Center for Fundamental and Applied Mathematics, MSU Department
Full-text PDF (430 kB) Citations (3)
References:
Abstract: Among restricted wreath products $G\wr \mathbb{Z}^k $, where $G$ is a finite abelian group, we find three large classes of groups admitting an automorphism $\varphi$ with finite Reidemeister number $R(\varphi)$ (number of $\varphi$-twisted conjugacy classes). In other words, groups from these classes do not have the $R_\infty$ property.
Moreover, we prove that if $\varphi$ is a finite order automorphism of $G\wr \mathbb{Z}^k$ with $R(\varphi)<\infty$, then $R(\varphi)$ is equal to the number of fixed points of the map $[\rho]\mapsto [\rho\circ \varphi]$ defined on the set of equivalence classes of finite dimensional irreducible unitary representations of $G\wr \mathbb{Z}^k$.
Keywords: Reidemeister number, twisted conjugacy class, Burnside-Frobenius theorem, unitary dual, finite-dimensional representation.
Funding agency Grant number
Foundation for the Development of Theoretical Physics and Mathematics BASIS
The work was supported by the Foundation for the Advancement of Theoretical Physics and Mathematics “BASIS”.
Received July 9, 2022, published November 30, 2022
Bibliographic databases:
Document Type: Article
UDC: 512.547.4, 512.544.43
MSC: 20C, 20E45, 22D10
Language: Russian
Citation: M. I. Fraiman, V. E. Troitsky, “Reidemeister classes in wreath products of abelian groups”, Sib. Èlektron. Mat. Izv., 19:2 (2022), 880–888
Citation in format AMSBIB
\Bibitem{FraTro22}
\by M.~I.~Fraiman, V.~E.~Troitsky
\paper Reidemeister classes in wreath products of abelian groups
\jour Sib. \`Elektron. Mat. Izv.
\yr 2022
\vol 19
\issue 2
\pages 880--888
\mathnet{http://mi.mathnet.ru/semr1547}
\crossref{https://doi.org/10.33048/semi.2019.16.074}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4518795}
Linking options:
  • https://www.mathnet.ru/eng/semr1547
  • https://www.mathnet.ru/eng/semr/v19/i2/p880
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:69
    Full-text PDF :12
    References:24
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024