Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2022, Volume 19, Issue 2, Pages 870–879
DOI: https://doi.org/10.33048/semi.2022.19.073
(Mi semr1546)
 

Mathematical logic, algebra and number theory

The description of Rota-Baxter operators of nonzero weight on complex general linear Lie algebra of order $2$

M. Goncharovab

a Sobolev Institute of Mathematics, Russia
b Novosibirsk State University, Department of Mechanics and Mathematics, Russia
References:
Abstract: In the paper, a classification of Rota-Baxter operators of weight $1$ on general linear complex Lie algebra of order $2$ is given. The description was made up to the action of $Aut(gl_2(\mathbb C))$.
Keywords: Lie algebra, Rota—Baxter operator, general linear Lie algebra.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation FWNF-2022-0002
The work was supported RAS Fundamental Research Program, project FWNF-2022-0002.
Received August 17, 2022, published November 30, 2022
Bibliographic databases:
Document Type: Article
UDC: 512.554
MSC: 17B38
Language: English
Citation: M. Goncharov, “The description of Rota-Baxter operators of nonzero weight on complex general linear Lie algebra of order $2$”, Sib. Èlektron. Mat. Izv., 19:2 (2022), 870–879
Citation in format AMSBIB
\Bibitem{Gon22}
\by M.~Goncharov
\paper The description of Rota-Baxter operators of nonzero weight on complex general linear Lie algebra of order~$2$
\jour Sib. \`Elektron. Mat. Izv.
\yr 2022
\vol 19
\issue 2
\pages 870--879
\mathnet{http://mi.mathnet.ru/semr1546}
\crossref{https://doi.org/10.33048/semi.2022.19.073}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4518794}
Linking options:
  • https://www.mathnet.ru/eng/semr1546
  • https://www.mathnet.ru/eng/semr/v19/i2/p870
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:89
    Full-text PDF :22
    References:24
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024