|
This article is cited in 1 scientific paper (total in 1 paper)
Mathematical logic, algebra and number theory
On function spaces. II
Yu. L. Ershov, M. V. Schwidefsky Sobolev Institute of Mathematics, Acad. Koptyug ave., 4, 630090, Novosibirsk, Russia
Abstract:
For certain properties $\mathfrak{P}$ of topological $T_0$-spaces, we prove that a $T_0$-space $\mathbb{Y}$ has property $\mathfrak{P}$ if and only if the function space $\mathbb{C}_\mathcal{T}(\mathbb{X},\mathbb{Y})$ endowed with a particular topology $\mathcal{T}$ possesses $\mathfrak{P}$ for some $T_0$-space $\mathbb{X}$.
Keywords:
$A$-space, core-compact space, $d$-space, essentially complete space, function space, injective space, sober space, $T_0$-space.
Received February 23, 2022, published November 11, 2022
Citation:
Yu. L. Ershov, M. V. Schwidefsky, “On function spaces. II”, Sib. Èlektron. Mat. Izv., 19:2 (2022), 815–834
Linking options:
https://www.mathnet.ru/eng/semr1542 https://www.mathnet.ru/eng/semr/v19/i2/p815
|
Statistics & downloads: |
Abstract page: | 138 | Full-text PDF : | 39 | References: | 19 |
|