Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2022, Volume 19, Issue 2, Pages 747–761
DOI: https://doi.org/10.33048/semi.2022.19.062
(Mi semr1536)
 

This article is cited in 1 scientific paper (total in 1 paper)

Discrete mathematics and mathematical cybernetics

Logarithmic asymptotics of the number of central vertices of almost all $n$-vertex graphs of diameter $k$

T. I. Fedoryaeva

Sobolev Institute of Mathematics, pr. Koptyuga, 4, 630090, Novosibirsk, Russia
Full-text PDF (435 kB) Citations (1)
References:
Abstract: The asymptotic behavior of the number of central vertices and F. Buckley's central ratio ${\mathbb R}_{c}(G)=|{\mathbb C}(G)|/|V(G)|$ for almost all $n$-vertex graphs $G$ of fixed diameter $k$ is investigated.
The logarithmic asymptotics of the number of central vertices for almost all such $n$-vertex graphs is established: $0$ or $\log_2 n$ ($1$ or $\log_2 n$), respectively, for arising here subclasses of graphs of the even (odd) diameter.
It is proved that for almost all $n$-vertex graphs of diameter $k$, ${\mathbb R}_{c}(G)=1$ for $k=1,2$, and ${\mathbb R}_{c }(G)=1-2/n$ for graphs of diameter $k=3$, while for $k\geq 4$ the value of the central ratio ${\mathbb R}_{c}(G)$ is bounded by the interval $(\frac{\Delta}{6} + r_1(n), 1-\frac{\Delta}{6} - r_1(n))$ except no more than one value (two values) outside the interval for even diameter $k$ (for odd diameter $k$) depending on $k$. Here $\Delta\in (0,1)$ is arbitrary predetermined constant and $r_1(n),r_2(n)$ are positive infinitesimal functions.
Keywords: graph, diameter, radius, central vertices, number of central vertices, central ratio, center, spectrum of center, typical graphs, almost all graphs.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation FWNF-2022-0018
The work was carried out within the framework of the state contract of the Sobolev Institute of Mathematics (project no. FWNF-2022-0018).
Received May 11, 2022, published November 11, 2022
Bibliographic databases:
Document Type: Article
UDC: 519.173, 519.175
MSC: 05C12, 05C80
Language: English
Citation: T. I. Fedoryaeva, “Logarithmic asymptotics of the number of central vertices of almost all $n$-vertex graphs of diameter $k$”, Sib. Èlektron. Mat. Izv., 19:2 (2022), 747–761
Citation in format AMSBIB
\Bibitem{Fed22}
\by T.~I.~Fedoryaeva
\paper Logarithmic asymptotics of the number of central vertices of almost all $n$-vertex graphs of diameter $k$
\jour Sib. \`Elektron. Mat. Izv.
\yr 2022
\vol 19
\issue 2
\pages 747--761
\mathnet{http://mi.mathnet.ru/semr1536}
\crossref{https://doi.org/10.33048/semi.2022.19.062}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4508345}
Linking options:
  • https://www.mathnet.ru/eng/semr1536
  • https://www.mathnet.ru/eng/semr/v19/i2/p747
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:138
    Full-text PDF :56
    References:20
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024