|
Geometry and topology
Homologically trivial part of the Turaev – Viro invariant order $7$
F. G. Korablevab a Chelyabinsk State University, 192, Br. Kashirinykh str., Chelyabinsk, 454000, Russia
b N.N. Krasovsky Institute of Mathematics and Meckhanics, 4, S. Kovalevskoy str., Ekaterinburg, 620990, Russia
Abstract:
Homologically trivial part of any Turaev – Viro invariant odd order $r$ is a Turaev – Viro type invariant order $\frac{r + 1}{2}$. In this paper we find an explicit formulas for this Turaev – Viro type invariant, corresponding to the invariant order $r = 7$. Our formulas express $6j$-symbols and color weights in the term of $\gamma$, where $\gamma$ is a root of the polynomial $\mathcal{T}(x) = x^3 - 2x^2 - x + 1$.
Keywords:
Turaev – Viro invariant, quantum number, $6j$-symbol.
Received July 15, 2022, published September 6, 2022
Citation:
F. G. Korablev, “Homologically trivial part of the Turaev – Viro invariant order $7$”, Sib. Èlektron. Mat. Izv., 19:2 (2022), 698–707
Linking options:
https://www.mathnet.ru/eng/semr1532 https://www.mathnet.ru/eng/semr/v19/i2/p698
|
Statistics & downloads: |
Abstract page: | 85 | Full-text PDF : | 22 | References: | 20 |
|