Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2022, Volume 19, Issue 2, Pages 698–707
DOI: https://doi.org/10.33048/semi.2022.19.058
(Mi semr1532)
 

Geometry and topology

Homologically trivial part of the Turaev – Viro invariant order $7$

F. G. Korablevab

a Chelyabinsk State University, 192, Br. Kashirinykh str., Chelyabinsk, 454000, Russia
b N.N. Krasovsky Institute of Mathematics and Meckhanics, 4, S. Kovalevskoy str., Ekaterinburg, 620990, Russia
References:
Abstract: Homologically trivial part of any Turaev – Viro invariant odd order $r$ is a Turaev – Viro type invariant order $\frac{r + 1}{2}$. In this paper we find an explicit formulas for this Turaev – Viro type invariant, corresponding to the invariant order $r = 7$. Our formulas express $6j$-symbols and color weights in the term of $\gamma$, where $\gamma$ is a root of the polynomial $\mathcal{T}(x) = x^3 - 2x^2 - x + 1$.
Keywords: Turaev – Viro invariant, quantum number, $6j$-symbol.
Funding agency Grant number
Russian Foundation for Basic Research 20-01-00127
Received July 15, 2022, published September 6, 2022
Bibliographic databases:
Document Type: Article
UDC: 515.162.3
MSC: 57K31
Language: Russian
Citation: F. G. Korablev, “Homologically trivial part of the Turaev – Viro invariant order $7$”, Sib. Èlektron. Mat. Izv., 19:2 (2022), 698–707
Citation in format AMSBIB
\Bibitem{Kor22}
\by F.~G.~Korablev
\paper Homologically trivial part of the Turaev -- Viro invariant order~$7$
\jour Sib. \`Elektron. Mat. Izv.
\yr 2022
\vol 19
\issue 2
\pages 698--707
\mathnet{http://mi.mathnet.ru/semr1532}
\crossref{https://doi.org/10.33048/semi.2022.19.058}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4457263}
Linking options:
  • https://www.mathnet.ru/eng/semr1532
  • https://www.mathnet.ru/eng/semr/v19/i2/p698
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:85
    Full-text PDF :22
    References:20
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024