Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2022, Volume 19, Issue 2, Pages 613–626
DOI: https://doi.org/10.33048/semi.2022.19.051
(Mi semr1525)
 

Discrete mathematics and mathematical cybernetics

A faster algorithm for counting the integer points number in $\Delta$-modular polyhedra

D. Gribanova, D. Malyshevba

a National Research University Higher School of Economics, 25/12, Bolshaja Pecherskaja str., Nizhny Novgorod, 603155, Russia
b Lobachevsky State University of Nizhny Novgorod, 23, Gagarina ave., Nizhny Novgorod, 603950, Russia
References:
Abstract: Let a polytope $\mathcal{P}$ be defined by a system $A x \leq b$. We consider the problem to count a number of integer points inside $\mathcal{P}$, assuming that $\mathcal{P}$ is $\Delta$-modular. The polytope $\mathcal{P}$ is $\Delta$-modular if all the rank sub-determinants of $A$ are bounded by $\Delta$ in the absolute value.
We present a new FPT-algorithm, parameterized by $\Delta$ and by the number of simple cones in the normal fun triangulation of $\mathcal{P}$, which is more efficient for $\Delta$-modular problems, than the approach of A. Barvinok et al. [1, 2, 3, 4, 5]. To this end, we do not directly compute the short rational generating function for $\mathcal{P} \cap \mathbb{Z}^n$, which is commonly used for the considered problem. We compute its particular representation in the form of exponential series that depends on one variable, using the dynamic programming principle. We completely do not use the A. Barvinok's unimodular sign decomposition technique.
Using our new complexity bound, we consider different special cases that may be of independent interest. For example, we give FPT-algorithms for counting the integer points number in $\Delta$-modular simplicies and similar polytopes that have $n + O(1)$ facets. For any fixed $m$, we give an FPT-algorithm to count solutions of the unbounded $m$-dimensional $\Delta$-modular knapsack problem. For the case, when $\Delta$ grows slowly with respect to $n$, we give a counting algorithm, which is more effective, than the state of the art ILP feasibility algorithm due to [6, 7].
Keywords: integer linear programming, short rational generating function, bounded sub-determinants, multidimensional knapsack problem, subset-sum problem, counting problem.
Funding agency Grant number
Russian Science Foundation 21-11-00194
The article was prepared under financial support of Russian Science Foundation grant No 21-11-00194.
Received April 25, 2022, published August 31, 2022
Bibliographic databases:
Document Type: Article
UDC: 519.165
MSC: 52C07
Language: English
Citation: D. Gribanov, D. Malyshev, “A faster algorithm for counting the integer points number in $\Delta$-modular polyhedra”, Sib. Èlektron. Mat. Izv., 19:2 (2022), 613–626
Citation in format AMSBIB
\Bibitem{GriMal22}
\by D.~Gribanov, D.~Malyshev
\paper A faster algorithm for counting the integer points number in $\Delta$-modular polyhedra
\jour Sib. \`Elektron. Mat. Izv.
\yr 2022
\vol 19
\issue 2
\pages 613--626
\mathnet{http://mi.mathnet.ru/semr1525}
\crossref{https://doi.org/10.33048/semi.2022.19.051}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4478152}
Linking options:
  • https://www.mathnet.ru/eng/semr1525
  • https://www.mathnet.ru/eng/semr/v19/i2/p613
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025