Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2022, Volume 19, Issue 2, Pages 562–577
DOI: https://doi.org/10.33048/semi.2022.19.047
(Mi semr1521)
 

Mathematical logic, algebra and number theory

Some remarks on Došen's logic $\mathsf{N}$ and its extensions

S. O. Speranski

Steklov Mathematical Institute of Russian Academy of Sciences, 8, Gubkina str., Moscow, 119991, Russia
References:
Abstract: This paper collects some observations about Došen's logic $\mathsf{N}$, where negation is treated as a modal operator, and its extensions. We shall see what happens when we add the contraposition axiom to several important extensions of $\mathsf{N}$, show that certain extensions of $\mathsf{N}$ are canonical, and also revisit the method of filtration.
Keywords: modal negation, intuitionistic modal logic, Heyting–Ockham logic, Hype, Routley star.
Funding agency Grant number
Russian Science Foundation 21-11-00318
This work was supported by the Russian Science Foundation under grant no. 21-11-00318.
Received March 21, 2022, published August 29, 2022
Bibliographic databases:
Document Type: Article
UDC: 510.64
MSC: 03B20, 03B45
Language: English
Citation: S. O. Speranski, “Some remarks on Došen's logic $\mathsf{N}$ and its extensions”, Sib. Èlektron. Mat. Izv., 19:2 (2022), 562–577
Citation in format AMSBIB
\Bibitem{Spe22}
\by S.~O.~Speranski
\paper Some remarks on Do\v{s}en's logic $\mathsf{N}$ and its extensions
\jour Sib. \`Elektron. Mat. Izv.
\yr 2022
\vol 19
\issue 2
\pages 562--577
\mathnet{http://mi.mathnet.ru/semr1521}
\crossref{https://doi.org/10.33048/semi.2022.19.047}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4478148}
Linking options:
  • https://www.mathnet.ru/eng/semr1521
  • https://www.mathnet.ru/eng/semr/v19/i2/p562
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:96
    Full-text PDF :35
    References:25
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024