|
This article is cited in 1 scientific paper (total in 1 paper)
Geometry and topology
On numerical characteristics of some bundles and their isomorphism classes on $\mathbb{P}^3$
A. A. Kytmanovab, N. N. Osipova, S. A. Tikhomirovc, T. V. Zykovaa a Siberian Federal University, 79, Svobodny ave., Krasnoyarsk, 660041, Russia
b Laboratory of Artificial Intelligence, Neurotechnology, and Business Analytics, Plekhanov Russian University of Economics, 36, Stremyanny lane, Moscow, 117997, Russia
c K.D. Ushinsky Yaroslavl State Pedagogical University, 108, Respublikanskaya str., Yaroslavl, 150000, Russia
Abstract:
We obtain formulas in the explicit form for the spectra of a family of stable rank $2$ vector bundles on $\mathbb{P}^3$ which isomorphism classes constitute the so-called Ein components in the Gieseker–Maruyama moduli scheme. We also obtain formulas in the explicit form for dimensions of the moduli space of the modified instanton bundles, and for their spectra. We show that Vedernikov and Hartshorne families in the Gieseker–Maruyama moduli scheme are particular cases of the Ein components.
Keywords:
stable vector bundle, Chern classes, Ein component, modified instanton bundles.
Received November 15, 2021, published July 25, 2022
Citation:
A. A. Kytmanov, N. N. Osipov, S. A. Tikhomirov, T. V. Zykova, “On numerical characteristics of some bundles and their isomorphism classes on $\mathbb{P}^3$”, Sib. Èlektron. Mat. Izv., 19:2 (2022), 415–425
Linking options:
https://www.mathnet.ru/eng/semr1512 https://www.mathnet.ru/eng/semr/v19/i2/p415
|
Statistics & downloads: |
Abstract page: | 101 | Full-text PDF : | 29 | References: | 23 |
|