Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2007, Volume 4, Pages 141–154 (Mi semr151)  

This article is cited in 2 scientific papers (total in 2 papers)

Research papers

Darcy's law in anisothermic porous medium

A. M. Meirmanov

Belgorod State University
Full-text PDF (812 kB) Citations (2)
References:
Abstract: A linear system of differential equations describing a joint motion of thermoelastic porous body with sufficiently large Lame's constants (absolutely rigid body) and thermofluid occupying porous space is considered. The rigorous justification is fulfilled for homogenization procedures as the dimensionless size of the pores tends to zero, while the porous body is geometrically periodic. As the results, we derive decoupled system consisting of Darcy's system of filtration for thermofluid (first approximation) and anisotropic Lamé's system of equations for thermoelastic solid (second approximation). The proof is based on Nguetseng's two-scale convergence method of homogenization in periodic structures.
Received November 27, 2007, published April 30, 2007
Bibliographic databases:
Document Type: Article
UDC: 517.95
MSC: 76S05
Language: Russian
Citation: A. M. Meirmanov, “Darcy's law in anisothermic porous medium”, Sib. Èlektron. Mat. Izv., 4 (2007), 141–154
Citation in format AMSBIB
\Bibitem{Mei07}
\by A.~M.~Meirmanov
\paper Darcy's law in anisothermic porous medium
\jour Sib. \`Elektron. Mat. Izv.
\yr 2007
\vol 4
\pages 141--154
\mathnet{http://mi.mathnet.ru/semr151}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2465421}
\zmath{https://zbmath.org/?q=an:1132.76310}
Linking options:
  • https://www.mathnet.ru/eng/semr151
  • https://www.mathnet.ru/eng/semr/v4/p141
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024