Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2022, Volume 19, Issue 1, Pages 360–370
DOI: https://doi.org/10.33048/semi.2022.19.031
(Mi semr1507)
 

This article is cited in 1 scientific paper (total in 1 paper)

Differentical equations, dynamical systems and optimal control

Boundary value problem for nonlinear mass-transfer equations under Dirichlet condition

Zh. Yu. Saritskaya

Institute of Applied Mathematics FEB RAS, 7, Radio str., Vladivostok, 690041, Russia
Full-text PDF (377 kB) Citations (1)
References:
Abstract: Global solvability of a boundary value problem for nonlinear mass-transfer equations under innhomogeneous Dirichlet condition for substance's concentration is proved. For a velocity vector we use a homogeneous Dirichlet condition. The model under consideration generalizes the Boussinesq approximation since the reaction coefficient depends nonlinearly on substance's concentration and depends on spatial variables. Sufficient conditions were established for initial data of boundary value problem under which its solution is unique and also there were determined the conditions under which the maximum principle for substance's concentration is valid.
Keywords: nonlinear mass-transfer model, generalized Boussinesq model, reaction coefficient, global solvability, maximum principle.
Funding agency Grant number
Russian Science Foundation 22-21-00271
Received March 3, 2022, published July 5, 2022
Bibliographic databases:
Document Type: Article
UDC: 517.95
MSC: 35A05
Language: Russian
Citation: Zh. Yu. Saritskaya, “Boundary value problem for nonlinear mass-transfer equations under Dirichlet condition”, Sib. Èlektron. Mat. Izv., 19:1 (2022), 360–370
Citation in format AMSBIB
\Bibitem{Sar22}
\by Zh.~Yu.~Saritskaya
\paper Boundary value problem for nonlinear mass-transfer equations under Dirichlet condition
\jour Sib. \`Elektron. Mat. Izv.
\yr 2022
\vol 19
\issue 1
\pages 360--370
\mathnet{http://mi.mathnet.ru/semr1507}
\crossref{https://doi.org/10.33048/semi.2022.19.031}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4449223}
Linking options:
  • https://www.mathnet.ru/eng/semr1507
  • https://www.mathnet.ru/eng/semr/v19/i1/p360
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024