Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2022, Volume 19, Issue 1, Pages 348–359
DOI: https://doi.org/10.33048/semi.2022.19.030
(Mi semr1506)
 

This article is cited in 1 scientific paper (total in 1 paper)

Discrete mathematics and mathematical cybernetics

On a class of vertex-transitive distance-regular covers of complete graphs, II

L. Yu. Tsiovkina

Krasovsky Institute of Mathematics and Mechanics, 16, S. Kovalevskoi str., Yekaterinburg, 620090, Russia
Full-text PDF (425 kB) Citations (1)
References:
Abstract: Let $\Gamma$ be an abelian antipodal distance-regular graph of diameter 3 with the following property: $(*)$ $\Gamma$ has a transitive group $\overline{G}$ of automorphisms which induces a primitive almost simple permutation group $\overline{G}^{\Sigma}$ on the set ${\Sigma}$ of its antipodal classes. If permutation rank ${\rm rk}(\overline{G}^{\Sigma})$ of $\overline{G}^{\Sigma}$ equals $2$, then $\Gamma$ is arc-transitive; moreover, all such graphs are now known. The purpose of this paper is to describe the graphs $\Gamma$ with the property $(*)$ in the case when ${\rm rk}(\overline{G}^{\Sigma})=3$. According to the classification of primitive almost simple permutation groups of rank $3$ the socle of the group $\overline{G}^{\Sigma}$ under the given condition is either a sporadic simple group, or an alternating group, or a simple group of exceptional Lie type, or a classical simple group. Earlier, we described the graphs $\Gamma$ provided that ${\rm rk}(\overline{G}^{\Sigma})=3$ and the socle of $\overline{G}^{\Sigma}$ is a sporadic simple group. Here we study the cases when $(i)$ the socle of the group $\overline{G}^{\Sigma}$ is an alternating group or $(ii)$ $|{\Sigma}|\le 2500$ and socle of $\overline{G}^{\Sigma}$ is a simple group of exceptional Lie type. We show that the family of non-bipartite graphs $\Gamma$ with the property $(*)$ and $\mathrm{rk}(\overline{G}^{\Sigma})=3$ in the alternating case is finite and limited to a small number of potential examples with $|\Sigma|\in\{10,28,120\}$, each of which is a covering of one of five certain distance-transitive Taylor graphs. For each given group $\overline{G}^{\Sigma}$ of degree $|{\Sigma}|\le 2500$ of exceptional type, we essentially restrict the set of admissible parameters of $\Gamma$.
Keywords: distance-regular graph, antipodal cover, abelian cover, vertex-transitive graph, rank 3 group.
Funding agency Grant number
Russian Science Foundation 20-71-00122
Received March 25, 2022, published July 5, 2022
Bibliographic databases:
Document Type: Article
UDC: 512.542.7, 519.17
MSC: 05B25, 05E18
Language: Russian
Citation: L. Yu. Tsiovkina, “On a class of vertex-transitive distance-regular covers of complete graphs, II”, Sib. Èlektron. Mat. Izv., 19:1 (2022), 348–359
Citation in format AMSBIB
\Bibitem{Tsi22}
\by L.~Yu.~Tsiovkina
\paper On a class of vertex-transitive distance-regular covers of complete graphs, II
\jour Sib. \`Elektron. Mat. Izv.
\yr 2022
\vol 19
\issue 1
\pages 348--359
\mathnet{http://mi.mathnet.ru/semr1506}
\crossref{https://doi.org/10.33048/semi.2022.19.030}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4449222}
Linking options:
  • https://www.mathnet.ru/eng/semr1506
  • https://www.mathnet.ru/eng/semr/v19/i1/p348
    Cycle of papers
    This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:106
    Full-text PDF :26
    References:27
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024