Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2022, Volume 19, Issue 1, Pages 332–341
DOI: https://doi.org/10.33048/semi.2022.19.028
(Mi semr1504)
 

Mathematical logic, algebra and number theory

Lambek invariants in a p-semi-abelian category

Ya. A. Kopylov

Sobolev Institute of Mathematics, 4, Akademik Koptyug ave., Novosibirsk, 630090, Russia
References:
Abstract: We consider the well-known invariants $\mathrm{Ker}$ and $\mathrm{Img}$ for commutative squares in P-semi-abelian categories. These invariants were introduced by Lambek for groups and then studied in a more general context by Hilton and Nomura. In this paper, P-semi-abelian analogs are proved for Lambek's isomorphism and acyclic sequences that include these invariants are found.
Keywords: P-semi-abelian category, commutative square, Lambek invariants.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation FWNF-2022-0006
The work of the author was carried out in the framework of the State Task to the Sobolev Institute of Mathematics (Project FWNF–2022–0006).
Received November 18, 2021, published June 27, 2022
Bibliographic databases:
Document Type: Article
UDC: 512.66, 517.98
MSC: 18A20, 46M18
Language: English
Citation: Ya. A. Kopylov, “Lambek invariants in a p-semi-abelian category”, Sib. Èlektron. Mat. Izv., 19:1 (2022), 332–341
Citation in format AMSBIB
\Bibitem{Kop22}
\by Ya.~A.~Kopylov
\paper Lambek invariants in a~p-semi-abelian category
\jour Sib. \`Elektron. Mat. Izv.
\yr 2022
\vol 19
\issue 1
\pages 332--341
\mathnet{http://mi.mathnet.ru/semr1504}
\crossref{https://doi.org/10.33048/semi.2022.19.028}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4449220}
Linking options:
  • https://www.mathnet.ru/eng/semr1504
  • https://www.mathnet.ru/eng/semr/v19/i1/p332
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:98
    Full-text PDF :31
    References:25
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024