Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2022, Volume 19, Issue 1, Pages 326–331
DOI: https://doi.org/10.33048/semi.2022.19.027
(Mi semr1503)
 

Computational mathematics

On the closeness of the incompatibility criteria for the original and perturbed systems of equations

V. N. Babenko

Military School named after General of the Army S.M. Shtemenko, 4, Krasina str., Krasnodar, 350063, Russia
References:
Abstract: The article considers the question of the influence of perturbations introduced into the matrix and the right side of a system of linear algebraic equations of a general form on the value of its inconsistency criterion. In this paper, due to the use of a pseudoinverse matrix, a new, more accurate estimate of the proximity of the incompatibility criteria for the original and perturbed systems is established.
Keywords: rank, kernel and image of a matrix, pseudoinverse matrix, singular value decomposition of a matrix, condition number of a matrix.
Received January 21, 2022, published June 23, 2022
Document Type: Article
UDC: 519.61
MSC: 65F20
Language: Russian
Citation: V. N. Babenko, “On the closeness of the incompatibility criteria for the original and perturbed systems of equations”, Sib. Èlektron. Mat. Izv., 19:1 (2022), 326–331
Citation in format AMSBIB
\Bibitem{Bab22}
\by V.~N.~Babenko
\paper On the closeness of the incompatibility criteria for the original and perturbed systems of equations
\jour Sib. \`Elektron. Mat. Izv.
\yr 2022
\vol 19
\issue 1
\pages 326--331
\mathnet{http://mi.mathnet.ru/semr1503}
\crossref{https://doi.org/10.33048/semi.2022.19.027}
Linking options:
  • https://www.mathnet.ru/eng/semr1503
  • https://www.mathnet.ru/eng/semr/v19/i1/p326
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024