Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2022, Volume 19, Issue 1, Pages 316–325
DOI: https://doi.org/10.33048/semi.2022.19.026
(Mi semr1502)
 

Mathematical logic, algebra and number theory

Description of modal logics which enjoy co-cover property

V. V. Rimatskiy

Siberian Federal University, 79, Svobodny ave., Krasnoyarsk, 660041, Russia
References:
Abstract: Here we use admissible rules to determine whenever modal logic satisfies weak co-cover property. We prove that logic $\lambda$ over $S4$ satisfies such property iff the given set of rules are admissible in $\lambda$.
Keywords: modal logic, inference rule, Kripke frame and model, admissible rule.
Funding agency Grant number
Russian Foundation for Basic Research 18-41-240005
The work is supported by RFBR and KRFN (grant 18-41-240005).
Received June 6, 2021, published June 21, 2022
Bibliographic databases:
Document Type: Article
UDC: 51.643, 517.11
MSC: 03F25, 03B35
Language: English
Citation: V. V. Rimatskiy, “Description of modal logics which enjoy co-cover property”, Sib. Èlektron. Mat. Izv., 19:1 (2022), 316–325
Citation in format AMSBIB
\Bibitem{Rim22}
\by V.~V.~Rimatskiy
\paper Description of modal logics which enjoy co-cover property
\jour Sib. \`Elektron. Mat. Izv.
\yr 2022
\vol 19
\issue 1
\pages 316--325
\mathnet{http://mi.mathnet.ru/semr1502}
\crossref{https://doi.org/10.33048/semi.2022.19.026}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4449218}
Linking options:
  • https://www.mathnet.ru/eng/semr1502
  • https://www.mathnet.ru/eng/semr/v19/i1/p316
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:74
    Full-text PDF :23
    References:27
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024