Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2022, Volume 19, Issue 1, Pages 309–315
DOI: https://doi.org/10.33048/semi.2022.19.025
(Mi semr1501)
 

Differentical equations, dynamical systems and optimal control

Regularity criterion for weak solutions to the Navier-Stokes involving one velocity and one vorticity components

Ahmad M. Alghamdia, Sadek Galabc, Maria Alessandra Ragusac

a Department of Mathematical Science, Faculty of Applied Science, Umm Alqura University, P. O. Box 14035, Makkah 21955, Saudi Arabia
b Department of Sciences Exactes, ENS of Mostaganem, University of Mostaganem, Box 227, Mostaganem 27000, Algeria
c Dipartimento di Matematica e Informatica, Università di Catania, Catania - Italy
References:
Abstract: In this note, we are devoted to study the conditional regularity for the three dimensional Navier-Stokes in terms of the Morrey and $BMO$ spaces. More precisely, we show that if $u$ is a weak solution and $u_{3}\in L^{2}(0,T;BMO(\mathbb{R}^{3}))$ and $\omega _{3}\in L^{ \frac{2}{2-r}}(0,T;\mathcal{\dot{M}}_{2,\frac{3}{r}}(\mathbb{R}^{3}))$ with $0<r<1$, then $u$ is regular on $(0,T]$. This improves the available result by Zhang (2018) with $u_{3}\in L^{2}(0,T;L^{\infty }(\mathbb{R}^{3}))$ and $\omega _{3}\in L^{\frac{2}{2-r}}(0,T;L^{\frac{3}{r}}(\mathbb{R}^{3}))$ with $0<r<1$.
Keywords: Navier-Stokes equations, regularity criteria, Morrey space.
Received March 18, 2022, published June 6, 2022
Bibliographic databases:
Document Type: Article
UDC: 517.9
MSC: 35B65, 35K92, 76D03
Language: English
Citation: Ahmad M. Alghamdi, Sadek Gala, Maria Alessandra Ragusa, “Regularity criterion for weak solutions to the Navier-Stokes involving one velocity and one vorticity components”, Sib. Èlektron. Mat. Izv., 19:1 (2022), 309–315
Citation in format AMSBIB
\Bibitem{AlgGalRag22}
\by Ahmad~M.~Alghamdi, Sadek~Gala, Maria~Alessandra~Ragusa
\paper Regularity criterion for weak solutions to the Navier-Stokes involving one velocity and one vorticity components
\jour Sib. \`Elektron. Mat. Izv.
\yr 2022
\vol 19
\issue 1
\pages 309--315
\mathnet{http://mi.mathnet.ru/semr1501}
\crossref{https://doi.org/10.33048/semi.2022.19.025}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4449217}
Linking options:
  • https://www.mathnet.ru/eng/semr1501
  • https://www.mathnet.ru/eng/semr/v19/i1/p309
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:93
    Full-text PDF :34
    References:12
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024