Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2022, Volume 19, Issue 1, Pages 285–291
DOI: https://doi.org/10.33048/semi.2022.19.022
(Mi semr1499)
 

Mathematical logic, algebra and number theory

Automorphisms of nonsplit coverings of $PSL_2(q)$ in odd characteristic dividing $q-1$

Andrei V. Zavarnitsine

Sobolev Institute of Mathematics, 4, Koptyug ave., Novosibirsk, 630090, Russia
References:
Abstract: We classify the nonsplit extensions of elementary abelian $p$-groups by $\operatorname{PSL}_2(q)$, with odd $p$ dividing $q-1$, for an irreducible induced action, calculate the relevant low-dimensional cohomology groups, and describe the automorphism groups of such extensions.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation FWNF-2022-0002
Supported by RAS Fundamental Research Program, project FWNF-2022-0002.
Received March 31, 2022, published May 17, 2022
Bibliographic databases:
Document Type: Article
UDC: 512.54
Language: English
Citation: Andrei V. Zavarnitsine, “Automorphisms of nonsplit coverings of $PSL_2(q)$ in odd characteristic dividing $q-1$”, Sib. Èlektron. Mat. Izv., 19:1 (2022), 285–291
Citation in format AMSBIB
\Bibitem{Zav22}
\by Andrei~V.~Zavarnitsine
\paper Automorphisms of nonsplit coverings of $PSL_2(q)$ in odd characteristic dividing $q-1$
\jour Sib. \`Elektron. Mat. Izv.
\yr 2022
\vol 19
\issue 1
\pages 285--291
\mathnet{http://mi.mathnet.ru/semr1499}
\crossref{https://doi.org/10.33048/semi.2022.19.022}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4449215}
Linking options:
  • https://www.mathnet.ru/eng/semr1499
  • https://www.mathnet.ru/eng/semr/v19/i1/p285
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:79
    Full-text PDF :20
    References:27
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024