Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2022, Volume 19, Issue 1, Pages 125–137
DOI: https://doi.org/10.33048/semi.2022.19.012
(Mi semr1489)
 

This article is cited in 1 scientific paper (total in 1 paper)

Mathematical logic, algebra and number theory

Nonlinear $*$-Jordan-type derivations on alternative $*$-algebras

A. J. O. Andradea, G. C. Moraesa, R. N. Ferreirab, B. L. M. Ferreirab

a Federal University of ABC, 5001, dos Estados ave., Santo André, 09210-580, Brazil
b Federal University of Technology, 800, Professora Laura Pacheco Bastos ave., Guarapuava, 85053-510, Brazil
Full-text PDF (374 kB) Citations (1)
References:
Abstract: Let $A$ be an unital alternative $*$-algebra. Assume that $A$ contains a nontrivial symmetric idempotent element $e$ which satisfies $xA \cdot e = 0$ implies $x = 0$ and $xA \cdot (1_A - e) = 0$ implies $x = 0$. In this paper, it is shown that $\Phi$ is a nonlinear $*$-Jordan-type derivation on A if and only if $\Phi$ is an additive $*$-derivation. As application, we get a result on alternative $W^{*}$-algebras.
Keywords: $*$-Jordan-type derivation, $*$-derivation, alternative $*$-algebras.
Funding agency Grant number
Coordenaҫão de Aperfeiҫoamento de Pessoal de Nível Superior 001
The first author was supported by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES)-Finance 001.
Received May 14, 2021, published March 1, 2022
Bibliographic databases:
Document Type: Article
UDC: 512
MSC: 17D05, 47B47
Language: English
Citation: A. J. O. Andrade, G. C. Moraes, R. N. Ferreira, B. L. M. Ferreira, “Nonlinear $*$-Jordan-type derivations on alternative $*$-algebras”, Sib. Èlektron. Mat. Izv., 19:1 (2022), 125–137
Citation in format AMSBIB
\Bibitem{AndMorFer22}
\by A.~J.~O.~Andrade, G.~C.~Moraes, R.~N.~Ferreira, B.~L.~M.~Ferreira
\paper Nonlinear $*$-Jordan-type derivations on alternative $*$-algebras
\jour Sib. \`Elektron. Mat. Izv.
\yr 2022
\vol 19
\issue 1
\pages 125--137
\mathnet{http://mi.mathnet.ru/semr1489}
\crossref{https://doi.org/10.33048/semi.2022.19.012}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4394274}
Linking options:
  • https://www.mathnet.ru/eng/semr1489
  • https://www.mathnet.ru/eng/semr/v19/i1/p125
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:79
    Full-text PDF :23
    References:28
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024