|
This article is cited in 1 scientific paper (total in 1 paper)
Mathematical logic, algebra and number theory
Nonlinear $*$-Jordan-type derivations on alternative $*$-algebras
A. J. O. Andradea, G. C. Moraesa, R. N. Ferreirab, B. L. M. Ferreirab a Federal University of ABC, 5001, dos Estados ave., Santo André, 09210-580, Brazil
b Federal University of Technology, 800, Professora Laura Pacheco Bastos ave., Guarapuava, 85053-510, Brazil
Abstract:
Let $A$ be an unital alternative $*$-algebra. Assume that $A$ contains a nontrivial symmetric idempotent element $e$ which satisfies $xA \cdot e = 0$ implies $x = 0$ and $xA \cdot (1_A - e) = 0$ implies $x = 0$. In this paper, it is shown that $\Phi$ is a nonlinear $*$-Jordan-type derivation on A if and only if $\Phi$ is an additive $*$-derivation. As application, we get a result on alternative $W^{*}$-algebras.
Keywords:
$*$-Jordan-type derivation, $*$-derivation, alternative $*$-algebras.
Received May 14, 2021, published March 1, 2022
Citation:
A. J. O. Andrade, G. C. Moraes, R. N. Ferreira, B. L. M. Ferreira, “Nonlinear $*$-Jordan-type derivations on alternative $*$-algebras”, Sib. Èlektron. Mat. Izv., 19:1 (2022), 125–137
Linking options:
https://www.mathnet.ru/eng/semr1489 https://www.mathnet.ru/eng/semr/v19/i1/p125
|
Statistics & downloads: |
Abstract page: | 79 | Full-text PDF : | 23 | References: | 28 |
|