Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2021, Volume 18, Issue 2, Pages 1742–1756
DOI: https://doi.org/10.33048/semi.2021.18.134
(Mi semr1475)
 

This article is cited in 1 scientific paper (total in 1 paper)

Discrete mathematics and mathematical cybernetics

Divisible design graphs with parameters $(4n,n+2,n-2,2,4,n)$ and $(4n,3n-2,3n-6,2n-2,4,n)$

L. Shalaginov

Chelyabinsk State University, 129, Bratiev Kashirinykh st., Chelyabinsk, 454001, Russia
Full-text PDF (407 kB) Citations (1)
References:
Abstract: A $k$-regular graph is called a divisible design graph (DDG for short) if its vertex set can be partitioned into $m$ classes of size $n$, such that two distinct vertices from the same class have exactly $\lambda_1$ common neighbors, and two vertices from different classes have exactly $\lambda_2$ common neighbors. A $4$-by-$n$-lattice graph is the line graph of $K_{4,n}$. This graph is a DDG with parameters $(4n,n+2,n-2,2,4,n)$. In the paper, we consider DDGs with these parameters. We prove that if $n$ is odd, then such graph can only be a $4$-by-$n$-lattice graph. If $n$ is even, we characterise all DDGs with such parameters. Moreover, we characterise all DDGs with parameters $(4n,3n-2,3n-6,2n-2,4,n)$ that are related to $4$-by-$n$-lattice graphs. Also, we prove that if Deza graph with parameters $(4n,n+2,n-2,2)$ or $(4n,3n-2, 3n-6, 2n-2)$ is not a DDG, then $n\leq 8$. All such Deza graphs were classified by computer search.
Keywords: divisible desing graph, divisible design, Deza graph, lattice graph.
Funding agency Grant number
Russian Foundation for Basic Research 20-51-53023
The reported study is funded by RFBR according to the research project 20-51-53023.
Received August 13, 2021, published December 30, 2021
Bibliographic databases:
Document Type: Article
UDC: 519.17
MSC: 05C50, 05E10, 15A18
Language: English
Citation: L. Shalaginov, “Divisible design graphs with parameters $(4n,n+2,n-2,2,4,n)$ and $(4n,3n-2,3n-6,2n-2,4,n)$”, Sib. Èlektron. Mat. Izv., 18:2 (2021), 1742–1756
Citation in format AMSBIB
\Bibitem{Sha21}
\by L.~Shalaginov
\paper Divisible design graphs with parameters $(4n,n+2,n-2,2,4,n)$ and $(4n,3n-2,3n-6,2n-2,4,n)$
\jour Sib. \`Elektron. Mat. Izv.
\yr 2021
\vol 18
\issue 2
\pages 1742--1756
\mathnet{http://mi.mathnet.ru/semr1475}
\crossref{https://doi.org/10.33048/semi.2021.18.134}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000747257800007}
Linking options:
  • https://www.mathnet.ru/eng/semr1475
  • https://www.mathnet.ru/eng/semr/v18/i2/p1742
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:82
    Full-text PDF :26
    References:30
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024