Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2007, Volume 4, Pages 103–112 (Mi semr147)  

Research papers

The regularized asymptotics in the singularly perturbed parabolic problem with angular boundary layers

A. S. Omuraliev

Kyrgyzstan-Turkey "MANAS" University
References:
Abstract: A regularized asymptotics of solution for singulary perturbed parabolic problem is built in domains with corner points as a boundary. The asymptotics of such problems includes both ordinary boundary layer functions as parabolic boundary layer functions and their products, which descreibe corner boundary layer.
Received May 24, 2005, published April 9, 2007
Bibliographic databases:
Document Type: Article
UDC: 519.633
MSC: 35B25
Language: Russian
Citation: A. S. Omuraliev, “The regularized asymptotics in the singularly perturbed parabolic problem with angular boundary layers”, Sib. Èlektron. Mat. Izv., 4 (2007), 103–112
Citation in format AMSBIB
\Bibitem{Omu07}
\by A.~S.~Omuraliev
\paper The regularized asymptotics in the singularly perturbed parabolic problem with angular boundary layers
\jour Sib. \`Elektron. Mat. Izv.
\yr 2007
\vol 4
\pages 103--112
\mathnet{http://mi.mathnet.ru/semr147}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2465417}
\zmath{https://zbmath.org/?q=an:1132.35303}
Linking options:
  • https://www.mathnet.ru/eng/semr147
  • https://www.mathnet.ru/eng/semr/v4/p103
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:258
    Full-text PDF :63
    References:60
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024