Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2021, Volume 18, Issue 2, Pages 1625–1638
DOI: https://doi.org/10.33048/semi.2021.18.120
(Mi semr1464)
 

This article is cited in 3 scientific papers (total in 3 papers)

Real, complex and functional analysis

Reduction of the Kolmogorov inequality for a non negative part of the second derivative on the real line to the inequality for convex functions on an interval

N. S. Payuchenko

N.N. Krasovskii institute of Mathematics and Mechanics, 16, Sofya Kovalevskaya str., Yekaterinbuerg, 620108, Russia
Full-text PDF (464 kB) Citations (3)
References:
Abstract: In this paper we delve into connection between sharp constants in the inequalities
$$\|y'\|_{L_q(\mathbb{R})}\le K_+ \sqrt{\|y\|_{L_r(\mathbb{R})}\|y''_+\|_{L_p(\mathbb{R})} },$$

$$\|u'\|_{L_q(0,1)}\le \overline{K} \sqrt{\|u\|_{L_r(0,1)} \|u''\|_{L_p(0,1)}},$$
where the second one is considered for convex functions $u(x)$, $x\in[0,1]$ with an absolutely continuous derivative that vanishes at the point $x=0$. We prove that $K_+=\overline{K}$ under conditions $1 \le q,r,p<\infty$ and $1/r+1/p=2/q$.
Keywords: Kolmogorov inequality, inequalities between norms of function and its derivatives, non-negative part of the second derivative, exact constant.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 075-02-2021-1383
Received November 28, 2021, published December 15, 2021
Bibliographic databases:
Document Type: Article
UDC: 517.51
MSC: 39B62
Language: Russian
Citation: N. S. Payuchenko, “Reduction of the Kolmogorov inequality for a non negative part of the second derivative on the real line to the inequality for convex functions on an interval”, Sib. Èlektron. Mat. Izv., 18:2 (2021), 1625–1638
Citation in format AMSBIB
\Bibitem{Pay21}
\by N.~S.~Payuchenko
\paper Reduction of the Kolmogorov inequality for a non negative part of the second derivative on the real line to the inequality for convex functions on an interval
\jour Sib. \`Elektron. Mat. Izv.
\yr 2021
\vol 18
\issue 2
\pages 1625--1638
\mathnet{http://mi.mathnet.ru/semr1464}
\crossref{https://doi.org/10.33048/semi.2021.18.120}
Linking options:
  • https://www.mathnet.ru/eng/semr1464
  • https://www.mathnet.ru/eng/semr/v18/i2/p1625
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024