Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2021, Volume 18, Issue 2, Pages 1475–1481
DOI: https://doi.org/10.33048/semi.2021.18.110
(Mi semr1454)
 

Discrete mathematics and mathematical cybernetics

Tight description of faces in torus triangulations with minimum degree 5

O. V. Borodina, A. O. Ivanovab

a Sobolev Institute of Mathematics, 4, Koptyuga ave., Novosibirsk, 630090, Russia
b Ammosov North-Eastern Federal University, 48, Kulakovskogo str., Yakutsk, 677013, Russia
References:
Abstract: The degree $d$ of a vertex or face in a graph $G$ is the number of incident edges. A face $f=v_1\ldots v_{d}$ in a plane or torus graph $G$ is of type $(k_1,k_2,\ldots, k_d)$ if $d(v_i)\le k_i$ for each $i$. By $\delta$ we denote the minimum vertex-degree of $G$. In 1989, Borodin confirmed Kotzig's conjecture of 1963 that every plane graph with minimum degree $\delta$ equal to 5 has a $(5,5,7)$-face or a $(5,6,6)$-face, where all parameters are tight. It follows from the classical theorem of Lebesgue (1940) that every plane quadrangulation with $\delta\ge3$ has a face of one of the types $(3,3,3,\infty)$, $(3,3,4,11)$, $(3,3,5,7)$, $(3,4,4,5)$. Recently, we improved this description to the following one: "$(3,3,3,\infty)$, $(3,3,4,9)$, $(3,3,5,6)$, $(3,4,4,5)$", where all parameters except possibly $9$ are best possible and 9 cannot go down below 8. In 1995, Avgustinovich and Borodin proved that every torus quadrangulation with $\delta\ge3$ has a face of one of the following types: $(3,3,3,\infty)$, $(3, 3, 4, 10)$, $(3, 3, 5, 7)$, $(3, 3, 6, 6)$, $(3, 4, 4, 6)$, $(4, 4, 4, 4)$, where all parameters are best possible. The purpose of our note is to prove that every torus triangulation with $\delta\ge5$ has a face of one of the types $(5,5,8)$, $(5,6,7)$, or $(6,6,6)$, where all parameters are best possible.
Keywords: plane graph, torus, triangulation, quadrangulation, structure properties, 3-faces.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 0314-2019-0016
FSRG-2020-0006
The first author' work was supported by the Ministry of Science and Higher Education of the Russian Federation (project no. 0314-2019-0016). The second author's work was supported by the Ministry of Science and Higher Education of the Russian Federation (Grant No. FSRG-2020-0006).
Received October 28, 2021, published December 1, 2021
Bibliographic databases:
Document Type: Article
UDC: 519.172.2
MSC: 05C75
Language: English
Citation: O. V. Borodin, A. O. Ivanova, “Tight description of faces in torus triangulations with minimum degree 5”, Sib. Èlektron. Mat. Izv., 18:2 (2021), 1475–1481
Citation in format AMSBIB
\Bibitem{BorIva21}
\by O.~V.~Borodin, A.~O.~Ivanova
\paper Tight description of faces in torus triangulations with minimum degree~5
\jour Sib. \`Elektron. Mat. Izv.
\yr 2021
\vol 18
\issue 2
\pages 1475--1481
\mathnet{http://mi.mathnet.ru/semr1454}
\crossref{https://doi.org/10.33048/semi.2021.18.110}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000734395000030}
Linking options:
  • https://www.mathnet.ru/eng/semr1454
  • https://www.mathnet.ru/eng/semr/v18/i2/p1475
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:85
    Full-text PDF :26
    References:10
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024