Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2007, Volume 4, Pages 64–84 (Mi semr145)  

This article is cited in 3 scientific papers (total in 3 papers)

Research papers

The $Q$-ideals in polynomial rings and the $Q$-modules over polynomial rings

E. Yu. Daniyarova

Omsk Branch of Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Science
Full-text PDF (773 kB) Citations (3)
References:
Abstract: In this paper we introduce the new categories of ideals in commutative rings of polynomials and of modules over rings of polynomials. This material proposes the definitions of linear ideal, $Q$ ideal of ring of commutative polynomials over a field, $Q$ radical, linear homomorphism between rings of polynomials and investigates the features of such objects. We cast the definition of $Q$ module over a ring of polynomials and examine the structure of such modules. In particular, it is developed the theory of primary decomposition of $Q$ modules. Also we prove that arbitrary $Q$ module can be decomposed in direct sum of torsion-free modules.
Received February 14, 2006, published March 15, 2007
Bibliographic databases:
Document Type: Article
UDC: 512.55
MSC: 13C99
Language: Russian
Citation: E. Yu. Daniyarova, “The $Q$-ideals in polynomial rings and the $Q$-modules over polynomial rings”, Sib. Èlektron. Mat. Izv., 4 (2007), 64–84
Citation in format AMSBIB
\Bibitem{Dan07}
\by E.~Yu.~Daniyarova
\paper The $Q$-ideals in polynomial rings and the $Q$-modules over polynomial rings
\jour Sib. \`Elektron. Mat. Izv.
\yr 2007
\vol 4
\pages 64--84
\mathnet{http://mi.mathnet.ru/semr145}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2465415}
\zmath{https://zbmath.org/?q=an:1132.13300}
Linking options:
  • https://www.mathnet.ru/eng/semr145
  • https://www.mathnet.ru/eng/semr/v4/p64
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024