Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2021, Volume 18, Issue 2, Pages 1423–1432
DOI: https://doi.org/10.33048/semi.2021.18.107
(Mi semr1448)
 

This article is cited in 1 scientific paper (total in 1 paper)

Discrete mathematics and mathematical cybernetics

Enumeration of strictly Deza graphs with at most $21$ vertices

S. V. Goryainova, D. I. Panasenkoab, L. V. Shalaginova

a Chelyabinsk State University, 129, Bratiev Kashirinykh str., Chelyabinsk, 454001, Russia
b N.N. Krasovskii Institute of Mathematics and Mechanics, 16, S. Kovalevskaya str., Yekaterinburg, 620108, Russia
Full-text PDF (337 kB) Citations (1)
References:
Abstract: A Deza graph $\Gamma$ with parameters $(v,k,b,a)$ is a $k$-regular graph with $v$ vertices such that any two distinct vertices have $b$ or $a$ common neighbours, where $b \geqslant a$. A Deza graph of diameter $2$ which is not a strongly regular graph is called a strictly Deza graph. We find all $139$ strictly Deza graphs up to $21$ vertices and list corresponding constructions and properties.
Keywords: Deza graph, strictly Deza graph, strongly regular graph, dual Seidel switching.
Funding agency Grant number
Russian Foundation for Basic Research 20-51-53023
The reported study is funded by RFBR according to the research project 20-51-53023.
Received May 20, 2021, published November 30, 2021
Bibliographic databases:
Document Type: Article
UDC: 519.17
MSC: 05C50, 05E10, 15A18
Language: English
Citation: S. V. Goryainov, D. I. Panasenko, L. V. Shalaginov, “Enumeration of strictly Deza graphs with at most $21$ vertices”, Sib. Èlektron. Mat. Izv., 18:2 (2021), 1423–1432
Citation in format AMSBIB
\Bibitem{GorPanSha21}
\by S.~V.~Goryainov, D.~I.~Panasenko, L.~V.~Shalaginov
\paper Enumeration of strictly Deza graphs with at most $21$ vertices
\jour Sib. \`Elektron. Mat. Izv.
\yr 2021
\vol 18
\issue 2
\pages 1423--1432
\mathnet{http://mi.mathnet.ru/semr1448}
\crossref{https://doi.org/10.33048/semi.2021.18.107}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000734395000027}
Linking options:
  • https://www.mathnet.ru/eng/semr1448
  • https://www.mathnet.ru/eng/semr/v18/i2/p1423
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024