Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2021, Volume 18, Issue 2, Pages 1165–1179
DOI: https://doi.org/10.33048/semi.2021.18.088
(Mi semr1429)
 

Geometry and topology

The volume of a spherical antiprism with $S_{2n}$ symmetry

N. Abrosimovabc, B. Vuongbc

a Sobolev Institute of Mathematics, 4, Koptyuga ave., Novosibirsk, 630090, Russia
b Regional Scientific and Educational Mathematical Center, Tomsk State University, 36, Lenina ave., Tomsk, 634050, Russia
c Novosibirsk State University, 1, Pirogova str., Novosibirsk, 630090, Russia
References:
Abstract: We consider a spherical antiprism. It is a convex polyhedron with $2n$ vertices in the spherical space $\mathbb{S}^3$. This polyhedron has a group of symmetries $S_{2n}$ generated by a mirror-rotational symmetry of order $2n$, i.e. rotation to the angle $\pi/n$ followed by a reflection. We establish necessary and sufficient conditions for the existence of such polyhedron in $\mathbb{S}^3$. Then we find relations between its dihedral angles and edge lengths in the form of cosine rules through a property of a spherical isosceles trapezoid. Finally, we obtain an explicit integral formula for the volume of a spherical antiprism in terms of the edge lengths.
Keywords: spherical antiprism, spherical volume, symmetry group $S_{2n}$, rotation followed by reflection, spherical isosceles trapezoid.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 075-02-2021-1392
This work was supported by the Ministry of Science and Higher Education of Russia (agreement No. 075-02-2021-1392).
Received October 17, 2021, published November 9, 2021
Bibliographic databases:
Document Type: Article
UDC: 514.132
Language: English
Citation: N. Abrosimov, B. Vuong, “The volume of a spherical antiprism with $S_{2n}$ symmetry”, Sib. Èlektron. Mat. Izv., 18:2 (2021), 1165–1179
Citation in format AMSBIB
\Bibitem{AbrVuo21}
\by N.~Abrosimov, B.~Vuong
\paper The volume of a spherical antiprism with $S_{2n}$ symmetry
\jour Sib. \`Elektron. Mat. Izv.
\yr 2021
\vol 18
\issue 2
\pages 1165--1179
\mathnet{http://mi.mathnet.ru/semr1429}
\crossref{https://doi.org/10.33048/semi.2021.18.088}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000734395000008}
Linking options:
  • https://www.mathnet.ru/eng/semr1429
  • https://www.mathnet.ru/eng/semr/v18/i2/p1165
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024