|
Discrete mathematics and mathematical cybernetics
Distance-regular Terwilliger graphs with intersection arrays $\{50,42,1;1,2,50\}$ and $\{50,42,9;1,2,42\}$ do not exist
A. A. Makhneva, M. S. Nirovaba a N.N. Krasovsky Institute of Mathematics and Meckhanics, 16, S. Kovalevskoy str., Ekaterinburg, 620990, Russia
b Kabardino-Balkarian State University named after H.M. Berbekov, 175, Chernyshevsky str., Nalchik, 360004, Russia
Abstract:
Let $\Gamma$ be a distance-regular graph and its local subgraphs are isomorphic the Hoffman-Singleton graph. A.L. Gavrilyuk and A.A. Makhnev proved that $\Gamma$ is the Terwilliger graph with intersection array $\{50,42,9;1,2,42\}$ or $\{50,42,1;1,2,50\}$. In this paper we prove that Terwilliger graphs with intersection arrays $\{50,42,1;1,2,50\}$ and $\{50,42,9;1,2,42\}$ do not exist.
Keywords:
distance-regular graph, Terwilliger graph, triple intersection numbers.
Received December 11, 2020, published October 20, 2021
Citation:
A. A. Makhnev, M. S. Nirova, “Distance-regular Terwilliger graphs with intersection arrays $\{50,42,1;1,2,50\}$ and $\{50,42,9;1,2,42\}$ do not exist”, Sib. Èlektron. Mat. Izv., 18:2 (2021), 1075–1082
Linking options:
https://www.mathnet.ru/eng/semr1423 https://www.mathnet.ru/eng/semr/v18/i2/p1075
|
|