Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2021, Volume 18, Issue 2, Pages 931–950
DOI: https://doi.org/10.33048/semi.2021.18.071
(Mi semr1412)
 

Differentical equations, dynamical systems and optimal control

Local solvability of an approximate problem for one-dimensional equations of dynamics of viscous compressible heat-conducting multifluids

A. E. Mamontovab, D. A. Prokudinab

a Lavrentyev Institute of Hydrodynamics SB RAS, 15, Lavrent'eva ave., 630090, Novosibirsk, Russia
b Laboratory for Mathematical and Computer Modeling, Natural and Industrial Systems, Faculty of Mathematics & Information Technologies, Altai State University, 61, Lenina ave., Barnaul, 656049, Russia
References:
Abstract: The problem of one-dimensional unsteady motion of a heat-conducting viscous compressible multifluid (mixture of perfect gases) on a bounded interval is considered, and the viscosity matrix is not assumed to be diagonal. The first step is made in proving the solvability of this problem: the local solvability of the approximate problem (for the Galerkin approximations) is shown.
Keywords: multicomponent viscous perfect gas, existence theorem, Galerkin method.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation FZMW-2020-0008
Received July 15, 2021, published September 6, 2021
Bibliographic databases:
Document Type: Article
UDC: 517.95
MSC: 35A05
Language: Russian
Citation: A. E. Mamontov, D. A. Prokudin, “Local solvability of an approximate problem for one-dimensional equations of dynamics of viscous compressible heat-conducting multifluids”, Sib. Èlektron. Mat. Izv., 18:2 (2021), 931–950
Citation in format AMSBIB
\Bibitem{MamPro21}
\by A.~E.~Mamontov, D.~A.~Prokudin
\paper Local solvability of an approximate problem for one-dimensional equations of dynamics of viscous compressible heat-conducting multifluids
\jour Sib. \`Elektron. Mat. Izv.
\yr 2021
\vol 18
\issue 2
\pages 931--950
\mathnet{http://mi.mathnet.ru/semr1412}
\crossref{https://doi.org/10.33048/semi.2021.18.071}
Linking options:
  • https://www.mathnet.ru/eng/semr1412
  • https://www.mathnet.ru/eng/semr/v18/i2/p931
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024