Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2021, Volume 18, Issue 2, Pages 827–833
DOI: https://doi.org/10.33048/semi.2021.18.061
(Mi semr1403)
 

This article is cited in 2 scientific papers (total in 2 papers)

Differentical equations, dynamical systems and optimal control

Reconstruction of a high-frequency source term of the wave equation from the asymptotics of the solution. Case of the Cauchy problem

E. V. Korablina, V. B. Levenshtam

Steklov Mathematical Institute of the Russian Academy of Sciences, 8, Gubkin str., Moscow, 119991, Russia
Full-text PDF (301 kB) Citations (2)
References:
Abstract: We consider The Cauchy problem for the wave equation with an unknown right hand side, that rapidly oscillates in time. This right hand side is reconstructed from the three-term asymptotics of a solution, which are given at one point of the domain. In this case, an approach developed earlier by one of the authors of this article is used to solve the inverse problems with rapidly oscillating data.
Keywords: wave equation, Cauchy problem, asymptotics of a solution, reconstruction of an unknown high-frequency source term.
Funding agency Grant number
Russian Science Foundation 20-11-20141
Thie research is supported by a grant from the Russian Science Foundtaion (project No. 20-11-20141).
Received April 28, 2021, published July 25, 2021
Bibliographic databases:
Document Type: Article
UDC: 517.955.8
MSC: 35C20
Language: English
Citation: E. V. Korablina, V. B. Levenshtam, “Reconstruction of a high-frequency source term of the wave equation from the asymptotics of the solution. Case of the Cauchy problem”, Sib. Èlektron. Mat. Izv., 18:2 (2021), 827–833
Citation in format AMSBIB
\Bibitem{KorLev21}
\by E.~V.~Korablina, V.~B.~Levenshtam
\paper Reconstruction of a high-frequency source term of the wave equation from the asymptotics of the solution. Case of the Cauchy problem
\jour Sib. \`Elektron. Mat. Izv.
\yr 2021
\vol 18
\issue 2
\pages 827--833
\mathnet{http://mi.mathnet.ru/semr1403}
\crossref{https://doi.org/10.33048/semi.2021.18.061}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4292562}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000695276200001}
Linking options:
  • https://www.mathnet.ru/eng/semr1403
  • https://www.mathnet.ru/eng/semr/v18/i2/p827
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:129
    Full-text PDF :56
    References:23
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024