Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2021, Volume 18, Issue 2, Pages 782–791
DOI: https://doi.org/10.33048/semi.2021.18.057
(Mi semr1399)
 

Mathematical logic, algebra and number theory

When a (dual-)Baer module is a direct sum of (co-)prime modules

M. R. Vedadi, N. Ghaedan

Department of Mathematical Sciences, Isfahan University of Technology, Isfahan, 84156-83111, Iran
References:
Abstract: Since 2004, Baer modules have been considered by many authors as a generalization of the Baer rings. A module $M_R$ is called Baer if every intersection of the kernels of endomorphisms on $M_R$ is a direct summand of $M_R$. It is known that commutative Baer rings are reduced. We prove that if a Baer module $M$ is a direct sum of prime modules, then every direct summand of $M$ is retractable. The converse is true whenever the triangulating dimension of $M$ is finite (e.g. if the uniform dimension of $M$ is finite). Dually, if every direct summand of a dual-Baer module $M$ is co-retractable, then it is a direct sum of co-prime modules and the converse is true whenever the sum is finite or $M$ is a max-module. Among other applications, we show that if $R$ is a commutative hereditary Noetherian ring then a finitely generated $R$-module is Baer iff it is projective or semisimple. Also, over a ring Morita equivalent to a perfect duo ring, all dual-Baer modules are semisimple.
Keywords: Baer module, co-prime module, co-retractable, prime module, dual-Baer, retractable module.
Received January 31, 2021, published July 6, 2021
Bibliographic databases:
Document Type: Article
UDC: 512.55
MSC: 16D10, 16D40, 13C05
Language: English
Citation: M. R. Vedadi, N. Ghaedan, “When a (dual-)Baer module is a direct sum of (co-)prime modules”, Sib. Èlektron. Mat. Izv., 18:2 (2021), 782–791
Citation in format AMSBIB
\Bibitem{VedGha21}
\by M.~R.~Vedadi, N.~Ghaedan
\paper When a (dual-)Baer module is a direct sum of (co-)prime modules
\jour Sib. \`Elektron. Mat. Izv.
\yr 2021
\vol 18
\issue 2
\pages 782--791
\mathnet{http://mi.mathnet.ru/semr1399}
\crossref{https://doi.org/10.33048/semi.2021.18.057}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000674363700001}
Linking options:
  • https://www.mathnet.ru/eng/semr1399
  • https://www.mathnet.ru/eng/semr/v18/i2/p782
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:89
    Full-text PDF :39
    References:19
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024