|
This article is cited in 1 scientific paper (total in 1 paper)
Geometry and topology
On the uniqueness of $ \mathcal{I}$-limits of sequences
A. Blali, A. El Amrani, R. A. Hassani, A. Razouki Sidi Mohamed Ben Abdellah University, B.P. 5206 Bensouda-Fès, Morocco
Abstract:
We define the $ \mathcal{I} $-sequential topology on a topological space where $ \mathcal{I} $ denotes an ideal of the set of positive integers. We also study the relationship between $ \mathcal{I}$-separatedness and uniqueness of $ \mathcal{I}$-limits of sequences. Furthermore, we give a characterization of uniqueness of $ \mathcal{I}$- limits of sequences by $ \mathcal{I}$-closedness of sequentially $ \mathcal{I}$-compact subset.
Keywords:
$ \mathcal{I}$-convergence, $ \mathcal{I}$-sequential topology, $ \mathcal{I}$-separated, sequentially $ \mathcal{I}$-compact, $ \mathcal{I}$-bounded, sequentially $ \mathcal{I}$-continuity.
Received January 30, 2021, published July 1, 2021
Citation:
A. Blali, A. El Amrani, R. A. Hassani, A. Razouki, “On the uniqueness of $ \mathcal{I}$-limits of sequences”, Sib. Èlektron. Mat. Izv., 18:2 (2021), 744–757
Linking options:
https://www.mathnet.ru/eng/semr1397 https://www.mathnet.ru/eng/semr/v18/i2/p744
|
|