|
Real, complex and functional analysis
Existence results for a class of nonlinear degenerate Navier problems
A. C. Cavalheiro Department of Mathematics, State University of Londrina, Londrina, 86057-970, Brazil
Abstract:
In this paper we are interested in the existence of solutions for Navier problem associated with the degenerate nonlinear elliptic equations \begin{eqnarray*} &&{\Delta}{\big[}{\omega}_1(x) {\vert{\Delta}u\vert}^{p-2}{\Delta}u + {\omega}_2(x) {\vert{\Delta}u\vert}^{q-2}{\Delta}u {\big]} -\sum_{j=1}^n D_j{\bigl[}{\omega}_3(x) {\mathcal{A}}_j(x, u, {\nabla}u){\bigr]}\\ && = f_0(x) - \sum_{j=1}^nD_jf_j(x), \ \ {\mathrm{in}} \ \ {\Omega} \end{eqnarray*} in the setting of the weighted Sobolev spaces.
Keywords:
degenerate nonlinear elliptic equations, weighted Sobolev spaces.
Received January 6, 2021, published June 4, 2021
Citation:
A. C. Cavalheiro, “Existence results for a class of nonlinear degenerate Navier problems”, Sib. Èlektron. Mat. Izv., 18:1 (2021), 647–667
Linking options:
https://www.mathnet.ru/eng/semr1388 https://www.mathnet.ru/eng/semr/v18/i1/p647
|
Statistics & downloads: |
Abstract page: | 116 | Full-text PDF : | 72 | References: | 17 |
|