Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2021, Volume 18, Issue 1, Pages 617–621
DOI: https://doi.org/10.33048/semi.2021.18.044
(Mi semr1385)
 

Discrete mathematics and mathematical cybernetics

Fixed points of cyclic groups acting purely harmonically on a graph

A. D. Mednykhab

a Sobolev Institute of Mathematics, 4, Koptyuga ave., Novosibirsk, 630090, Russia
b Novosibirsk State University, 1, Pirogova str., Novosibirsk, 630090, Russia
References:
Abstract: Let $X$ be a finite connected graph, possibly with loops and multiple edges. An automorphism group of $X$ acts purely harmonically if it acts freely on the set of directed edges of $X$ and has no invertible edges. Define a genus $g$ of the graph $X$ to be the rank of the first homology group. A discrete version of the Wiman theorem states that the order of a cyclic group $\mathbb{Z}_n$ acting purely harmonically on a graph $X$ of genus $g>1$ is bounded from above by $2g+2.$ In the present paper, we investigate how many fixed points has an automorphism generating a «large» cyclic group $\mathbb{Z}_n$ of order $n\ge2g-1.$ We show that in the most cases, the automorphism acts fixed point free, while for groups of order $2g$ and $2g-1$ it can have one or two fixed points.
Keywords: graph, homological genus, harmonic automorphism, fixed point, Wiman theorem.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 0314-2019-0007
The study of the author was carried out within the framework of the state contract of the Sobolev Institute of Mathematics (project no. 0314-2019-0007).
Received April 6, 2021, published June 2, 2021
Bibliographic databases:
Document Type: Article
UDC: 519.175.3, 519.172
MSC: 05C30, 39A10
Language: English
Citation: A. D. Mednykh, “Fixed points of cyclic groups acting purely harmonically on a graph”, Sib. Èlektron. Mat. Izv., 18:1 (2021), 617–621
Citation in format AMSBIB
\Bibitem{Med21}
\by A.~D.~Mednykh
\paper Fixed points of cyclic groups acting purely harmonically on a graph
\jour Sib. \`Elektron. Mat. Izv.
\yr 2021
\vol 18
\issue 1
\pages 617--621
\mathnet{http://mi.mathnet.ru/semr1385}
\crossref{https://doi.org/10.33048/semi.2021.18.044}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000674348900001}
Linking options:
  • https://www.mathnet.ru/eng/semr1385
  • https://www.mathnet.ru/eng/semr/v18/i1/p617
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:167
    Full-text PDF :66
    References:16
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024