Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2021, Volume 18, Issue 1, Pages 548–560
DOI: https://doi.org/10.33048/semi.2021.18.040
(Mi semr1380)
 

Differentical equations, dynamical systems and optimal control

About convergence of difference schemes for a third-order pseudo-parabolic equation with nonlocal boundary value condition

A. K. Bazzaevab, D. K. Gutnovab

a North Ossetian State University after K.L. Khetagurov, 44-46, Vatutina str., Vladikavkaz, 362025, North Ossetia – Alania, Russia
b Vladikavkaz Institute of Management, 14, Borodinskaya str., Vladikavkaz, 362025, North Ossetia – Alania, Russia
References:
Abstract: A nonlocal boundary value problem for a third-order pseudo-parabolic equation with variable coefficients is considered. For solving this problem, a priori estimates in the differential and difference forms are obtained. The obtained a priori estimates imply the uniqueness and stability of the solution on a layer with respect to the initial data and the right-hand side and the convergence of the solution of the difference problem to the solution of the differential problem.
Keywords: boundary value problem, a nonlocal boundary value problem, a nonlocal condition, a third-order pseudo-parabolic equation, difference schemes, stability and convergence of difference schemes, a priori estimates, energy inequality method.
Received July 13, 2020, published May 25, 2021
Bibliographic databases:
Document Type: Article
UDC: 519.633
MSC: 65M12
Language: English
Citation: A. K. Bazzaev, D. K. Gutnova, “About convergence of difference schemes for a third-order pseudo-parabolic equation with nonlocal boundary value condition”, Sib. Èlektron. Mat. Izv., 18:1 (2021), 548–560
Citation in format AMSBIB
\Bibitem{BazGut21}
\by A.~K.~Bazzaev, D.~K.~Gutnova
\paper About convergence of difference schemes for a third-order pseudo-parabolic equation with nonlocal boundary value condition
\jour Sib. \`Elektron. Mat. Izv.
\yr 2021
\vol 18
\issue 1
\pages 548--560
\mathnet{http://mi.mathnet.ru/semr1380}
\crossref{https://doi.org/10.33048/semi.2021.18.040}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000717476900001}
Linking options:
  • https://www.mathnet.ru/eng/semr1380
  • https://www.mathnet.ru/eng/semr/v18/i1/p548
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:217
    Full-text PDF :81
    References:39
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024